Google

Startup

technical
guide

Al agents

Table of
contents

Introduction

Core concepts of Al agents

An overview of Google Cloud'’s agent ecosystem
Key components of every agent

The role of grounding in agentic systems

Key takeaways

How to build Al agents

A complete toolkit for building Al agents

A step-by-step guide: Defining an LLM agent

Govern and scale your agent workforce with Google Agentspace
Other options for building agents

Key takeaways

Ensuring Al agents are reliable and responsible
AgentOps: A framework for production-ready agents
Build responsible and secure Al agents with AgentOps

Key takeaways
More from Google’s full Al stack
Conclusion

Resources

01

02
04
09
17
23

25
27
40
43
45
46

48
50
54
56

58

59

60

Introduction

The development of Al agents represents a paradigm shift in
software engineering, enabling startups to automate complex
workflows, create novel user experiences, and solve business
problems that were previously technically infeasible.

But moving from a promising prototype to a production-ready
agent means solving a new set of challenges. How do you
manage their non-deterministic behavior? How do you verify
their complex reasoning paths? And, crucially, where do you
get started?

This technical guide will help answer questions like these.

It provides a systematic, operations-driven roadmap for
navigating the new landscape, and is geared to help startups
and developers who are racing to embrace the potential

of agentic systems.

You'll learn the foundational concepts of agentic systems,
from their core architectural components to the principles
that ensure reliable and responsible operation in production.
And you'll learn about the full spectrum of tools that make
building and using agents on Google Cloud more efficient,
from code-first development with Agent Development Kit
(ADK) and operational automation with the Agent Starter Pack,
to no-code agent creation with Google Agentspace.

The focus of this guide

The agentic Al ecosystem offers many tools, libraries,
and approaches for building cognitive architectures.
There are open-source frameworks from Google like
Genkit and Google Cloud'’s conversational Al offerings,
as well as popular open-source libraries like LangChain
and CrewAl.

Whether you're validating an idea, building an MVP,
or supporting a product in production, this guide
will help across all stages of your project.

How to use this guide

New to Al agents?

Start with for the core concepts.

Ready to build?

Jump to to create your first agent using ADK.
Agent built?

Dive into to make it safe, stable, and scalable.

Want extra support?

Use the Gemini Kit to prototype faster, and apply

to the Google for Startups Cloud Program to receive
expert guidance and up to $350k USD in cloud credits.

This guide focuses primarily on ADK, sharing concepts
and architectural patterns that allow you to build robust,
scalable agents on Google Cloud while retaining the ability
to integrate other preferred tools and libraries.

Google Cloud

https://google.github.io/adk-docs/
https://github.com/GoogleCloudPlatform/agent-starter-pack
https://cloud.google.com/products/agentspace
https://genkit.dev/
https://cloud.google.com/conversational-ai
https://goo.gle/40FG3nt
https://cloud.google.com/startup/apply?utm_source=cloud_sfdc&utm_medium=et&utm_campaign=FY21-Q1-global-demandgen-website-cs-startup_program_mc&utm_content=ai-agent-report-cta&utm_term=-

Section 1

Core concepts
of Al agents

(" Section 1: Y (section2) (Section3)
(_Section 1: Core concepts of Al agents) (_Section2) (Section3)

The field of agentic Al is evolving rapidly.

This section provides foundational knowledge
on Al agents, explaining their core concepts,
purpose, and operational mechanics. It also
details the relevant tools and services available

within Google Cloud.
®) Prefer audio? Listen to the podcast version This podcast was created using NotebookLM with the
of this section, created with NotebookLM. prompt: “As a podcast host, create a conversational and

educational podcast for ‘Startup technical guide: Al agents,’
targeting a technical audience of startup founders and
developers. The podcast must cover the three main paths
for using Al agents (build, use, partner), detailing tools

like the Agent Development Kit (ADK) and pre-built

Gemini agents.

“It should then explain the core components of an agent,
including models, tools, orchestration, and runtime. Also,
cover how to ensure trust and power through techniques
like grounding with Retrieval-Augmented Generation (RAG)
and leveraging multimodality. Conclude with a summary

of the key takeaways and a clear call to action directing
listeners to Google’s resources.”

Google Cloud

3

https://goo.gle/46okwl4

(" Section 1: Y (section2) (Section3)
(_Section 1: Core concepts of Al agents) (_Section2) (Section3)

11 An overview of Google
Cloud’s agent ecosystem

éé

The agentive workflow is the next frontier.
It's not just about asking a question and
getting an answer. It’s about giving Al a

or ‘resolve this supply chain disruption’—
and having it orchestrate the multi-step
tasks needed to achieve it. This will
fundamentally change productivity.”

Thomas Kurian

complex goal—like ‘plan this product launch’

Building production-grade Al agents requires more than
selecting a large language model. A complete solution
demands scalable infrastructure, robust data integration
tooling, and architectural patterns that accommodate
diverse technical requirements.

Google Cloud supports the comprehensive development
of agentic systems, whether you're building your own agents,
using pre-built Google Cloud agents, or bringing in partner
agents. Underpinned by the Model Context Protocol (MCP)
and Agent2Agent (A2A) protocol, this common framework
is designed for interoperability. This way, regardless of their
origin or architecture, your agents can collaborate within

CEO of Google Cloud the Google Cloud ecosystem.!
Build your Use Google Cloud Bring in
own agents agents partner agents

Interoperability with MCP and A2A protocol

1. MCP and A2A protocol are covered in depth in section 2 of this guide.

Google Cloud

https://googleapis.github.io/genai-toolbox/getting-started/mcp_quickstart/
https://a2a-protocol.org/latest/

(Section 1: Core concepts of Al agents

coction o) (Cectiona)
‘\Sectlon 2/‘ ‘\Sectlon 3/‘

Build your own agents

If you're looking to build custom agents geared to tackle
specific tasks, then this is the route for you. Here, you've got
two options: a code-first approach for maximum control

or an application-first approach for accelerated development.

Agent Development Kit for custom,
code-first development

This approach is best for developers, technical startups,
and teams that require a high degree of control over agent
behavior. Google Cloud’s Agent Development Kit (ADK)

is built for this custom approach.

ADK empowers developers to build, manage, evaluate,

and deploy Al-powered agents. It provides a robust and
flexible environment for creating both conversational

and non-conversational agents, capable of handling complex
tasks and workflows.

Agents built with ADK can easily be deployed on Vertex Al
Agent Engine, a managed, scalable environment designed
specifically for this purpose. Because these agents are
containerized, they can also be deployed to any environment
that runs containers, such as Cloud Run and Google
Kubernetes Engine (GKE).

Core capabilities

+ Orchestration logic: The agent’s core reasoning process,
like the ReAct framework (see section 1.2), allows it
to plan and execute a sequence of tool calls and actions
to accomplish a complex goal.

« Tool definition and registration: An interface for defining
custom functions and APlIs, allowing the agent to interact
with data, APIs, and external systems.

» Context management: A system that provides the agent
with memory, allowing you to use the agent to recall user
preferences and conversational history across multiple
interactions to provide a coherent experience.

 Evaluation and observability: A suite of built-in tools
to rigorously test agent quality, debug the agent’s
step-by-step reasoning, and monitor its performance
in a production environment.

» Containerization: The capability to package the agent
into a standard, portable container, making it ready
for deployment on any compatible cloud environment.

» Multi-agent composition: The ability to build systems
where multiple specialized agents can collaborate,
delegate tasks, and work together to solve a problem.

Why it matters for startups

» Automate workflows, not just conversations:
Implement multi-step orchestration logic to solve complex
business problems, creating the operational leverage
a small team needs to scale.

 Build a defensible product: Connect agents directly to
your proprietary APIs and internal data to create a product
with a real competitive moat.

* Remember your customers to deliver a truly
personal experience: Seamlessly integrate short-term
conversational context with long-term knowledge,
enabling you to have your agent recall past interactions
and build a true customer relationship.

+ Launch with confidence: Leverage built-in evaluation
and observability to rigorously test and debug your agent,
ensuring you ship a reliable, production-grade product.

» Focus on your product, not infrastructure: Package your
agent into a standard container for a faster, more reliable
path to production using standard DevOps practices.

https://google.github.io/adk-docs/
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
https://cloud.google.com/run/docs
https://cloud.google.com/kubernetes-engine/docs
https://cloud.google.com/kubernetes-engine/docs

(Section 1: Core concepts of Al agents

coction o) (Cectiona)
‘\Sectlon 2/‘ ‘\Sectlon 3/‘

Google Agentspace for
application-first development

The second primary pathway for building is through Google
Agentspace. Unlike the code-first ADK, you can use Google
Agentspace to orchestrate your entire Al workforce and
empower non-technical team members to build custom
agents using a no-code designer.

This platform-based approach is ideal for managing multiple
agents and scaling their use across your mature startup’s
growing cohort of Saa$S applications.

Core capabilities

+ Unified company-wide search: Connects to and
searches across multiple SaaS applications.

+ Multimodal data synthesis: Understands and synthesizes

information from text, images, charts, and video while
respecting data permissions.

Pre-built agent library: Provides a suite of ready-
to-use agents for complex tasks like deep research
or idea generation.

+ No-code custom agent builder: Includes Agent Designer,
which allows non-technical users to create agents
via a prompt-driven interface.

Why it matters for startups

+ Break down data silos: Non-developer teams can build
and deploy agents that can access and act across these
fragmented data sources and applications.

+ Automate workflows: Create cross-platform workflows
without consuming scarce engineering resources,
freeing up your engineering team to focus on core
product development.

éé

Making Gemini a world model is a critical
step in developing a new, more general,
and more useful kind of Al—a universal

Al assistant. This is an Al that’s intelligent,
understands the context you are in, and
that can plan and take action on your
behalf, across any device.”

Demis Hassabis
CEO of Google DeepMind

Use Google Cloud agents

With rapid prototyping and easy ways to integrate Al into your
existing apps, managed agents let you focus on core business
logic rather than managing infrastructure. They’re also ideal

if your engineering resources are limited.

Gemini Code Assist

Gemini Code Assist is an Al-powered assistant for developers.
It integrates into multiple points of the software development
lifecycle, providing assistance through IDE extensions, a
command-line interface, GitHub integration, and within various
Google Cloud services.

Core capabilities

« IDE integration: Within popular IDEs (VS Code, JetBrains
IDEs, Android Studio), it provides code completion, on-
demand function generation, and a chat interface. It uses
Gemini’s large context window to provide responses
relevant to the open codebase. Enterprise editions can
be connected to private source code repositories for more
customized suggestions.

« Command-line interface: Gemini CLI is an open-source
Al agent that brings Gemini capabilities directly to the
terminal for tasks such as code understanding, file
manipulation, and dynamic troubleshooting.

+ GitHub integration: On GitHub, Gemini Code Assist can
automatically review pull requests to identify bugs and
style issues, suggesting specific code changes.

- Agent-driven development: Deploys Al agents capable
of performing complex, multi-file edits across a full
project’s context. These agentic workflows incorporate
Human in the Loop (HITL) oversight and can integrate
with ecosystem tools that follow the MCP.

» Google Cloud service integration: Provides Al assistance
directly within services like Firebase (app error analysis,
performance insights), Colab Enterprise (Python code
generation), BigQuery (natural language to SQL, query
optimization), Cloud Run, and Apigee.

Google Cloud

https://cloud.google.com/products/agentspace
https://cloud.google.com/products/agentspace
https://codeassist.google/
https://codeassist.google/#available-in-your-terminal-favorite-ides-and-platforms
https://github.com/google-gemini/gemini-cli
https://github.com/marketplace/gemini-code-assist

(Section 1: Core concepts of Al agents) (Section 2) (Section 3)

Why it matters for startups

Gemini Code Assist acts as a force multiplier. It can handle
software development tasks across the development lifecycle,
from routine tasks like writing boilerplate code to more
complex operations like multi-file refactoring.

You can delegate a wide range of tasks to Gemini Code Assist.
Here are a few examples that show its capabilities.

+ For automating boilerplate: Generate a Python Cloud
Function that triggers on an HTTP request. It should parse
a JSON payload for a userld and documentld, then
use the google-cloud-firestore client library to fetch
a specific document from a 'users' collection and return
it as a JSON response.

+ For comprehensive testing: Provide one of your existing
functions and ask Code Assist to generate a complete test
suite, including the necessary mocks for Google Cloud
services like Cloud Storage or Firestore.

+ For large-scale, Gemini-driven refactoring: Ask it
to analyze multiple services across your codebase and
generate a strategic plan. For example: “Given our 'user-
service' and 'auth-service', propose a step-by-step plan
to refactor the authentication logic into a single, shared
library, outlining the trade-offs of this approach.”

Gemini Cloud Assist

Gemini Cloud Assist is an Al expert for your Google Cloud
environment, providing context-aware assistance for
infrastructure management and application operations.

It uses context from your project, including Google Cloud
project IDs and the specific product page being viewed
in the console, to tailor its support.2

Core capabilities

+ Design and deploy: Within the Application Design Center,
you can describe desired infrastructure outcomes
in natural language. Gemini Cloud Assist generates
architecture diagrams and application templates, which
can be exported as Terraform for integration with existing
Infrastructure as Code (IaC) workflows.

+ Troubleshoot and resolve: Integrates with Cloud
Observability to summarize complex log entries and
explain error messages. For deeper issues, you can launch
investigations, where Gemini analyzes logs and metrics
to identify the root cause.

2. For details on how Gemini Cloud Assist is grounded,
see the official documentation.

» Configure and optimize: Provides personalized cost and
utilization recommendations within the FinOps Hub as well
as the Cost Optimization dashboard.

+ Secure and analyze: Enables natural language investigation
of network flows and logs. It provides guidance on security
tasks such as data encryption, secrets management, and
generating or testing custom organization policies. It can
also recommend IAM roles and diagnose permission errors.

Why it matters for startups

 Free up time: Cloud management can eat up engineering
time. Gemini Cloud Assist frees you up to focus on building
your product.

Try these prompts in Gemini Cloud Assist:

How do | use Vertex Al to deploy a model?

Create a high-level plan for designing, building,
and deploying a web app in Google Cloud.

List all Cloud Storage buckets in the prod-v1 project
that do not have Object Versioning enabled.

What are the public-facing firewall rules applied
to instances with the network tag external-web-server?

Show me all IAM roles granted to the service account
data-pipeline@my-project.iam.gserviceaccount.com

https://cloud.google.com/products/gemini/cloud-assist
https://cloud.google.com/application-design-center/docs/overview
https://cloud.google.com/products/observability
https://cloud.google.com/products/observability
https://cloud.google.com/gemini/docs/cloud-assist/investigations
https://cloud.google.com/gemini/docs/cloud-assist/overview
https://cloud.google.com/billing/docs/how-to/finops-hub
https://cloud.google.com/hub/docs/optimize
https://cloud.google.com/docs/security#gemini-cloud-assist-for-security-and-compliance
https://cloud.google.com/docs/security#gemini-cloud-assist-for-security-and-compliance

(Section 1: Core concepts of Al agents) (Section2) (Section3 n

Gemini in Colab Enterprise Why it matters for startups

If your startup is working in data science, machine + Accelerate research and development:

learning, or analytics, Gemini in Colab Enterprise turns Automate the most tedious aspects of data preparation,
every notebook into a collaborative Al workspace. analysis, and visualization, allowing developers to iterate
It's built to generate, explain, and debug Python code on new models and ideas significantly faster.

all in context.

» Lower the barrier to entry: Engineers new to
data science can hit the ground running, while
Core capabilities experienced practitioners can focus more on model

+ Autocomplete and generate Python code within Colab. experimentation and less on data wrangling.

+ Explain code logic and errors in simple language.

« Filter, transform, and visualize data. Bring in partner agents

+ Recommend public datasets and research resources. . o .
If your use case is more specialized, you can easily

+ Summarize entire notebooks or code cells. integrate third-party or open-source agents into your
stack using Google Cloud'’s open ecosystem and via the
Google Cloud Marketplace.

Try th rompts in Gemini in Colab Enterprise:
y these prompts €e € P Explore Agent Garden to deploy pre-built ADK agents that

already support data reasoning and inter-agent collaboration.
You can mix and match them with the agents you build,
speeding up time to impact.

How do | filter a Pandas DataFrame?

Plot average revenue by region.

Show me a list of publicly available datasets for climate tech.

Summarize the goal of this notebook.

GoogleCloud 8

https://cloud.google.com/gemini/docs/colab/overview
https://cloud.google.com/marketplace
https://console.cloud.google.com/vertex-ai/agents/agent-garden

(Section 1: Core concepts of Al agents (Section 2> (Section 3>

12 Key components
of every agent

Models: Selection and tuning

Think of the model as your agent’s brain. You can use
the model to read user requests, figure out what needs
to happen, and generate smart responses.

How to choose the right model

Choosing the right model is not about selecting the most
powerful one available, but about finding the optimal balance
of capability, speed, and cost for your use case. Every model
can be evaluated on these three conflicting characteristics,
and the goal is to identify the most efficient option for

a specific job.

As a model’s capability increases, its cost and latency
generally increase as well. The most common mistake

is over-investing in capability when a use case doesn’t need
it, leading to inefficient spending and slower performance.
The optimal strategy is to select the most efficient model
for any given task.

This principle is most powerfully applied at a system level.
Robust cognitive architectures employ multiple specialized
agents, each dynamically selecting the leanest model

for its specific sub-task. This ensures, for instance, that a
heavyweight model is reserved for complex reasoning, while
a lightweight model handles routine queries. This multi-agent
approach provides the architectural flexibility to optimize
the cost and performance of the entire system, not just

a single component.

éé

Al agents are systems that combine the
intelligence of advanced Al models with
access to tools so they can take actions
on your behalf, under your control.”

Sundar Pichai
CEO of Google and Alphabet

e Use cases

Early-stage prototyping and at-scale tasks

* Model profile: A lightweight, low-cost model
like Gemini 2.5 Flash-Lite.

« Rationale: This is the most cost-efficient
and fastest 2.5 model, excelling at high-volume,
latency-sensitive tasks like translation and
classification.

High-volume, high-quality applications

» Model profile: A balanced, mid-range model
like Gemini 2.5 Flash.

+ Rationale: This model is designed to control
the trade-off between quality, cost, and speed.
It delivers strong performance on complex tasks
at a lower price point than Pro, making it perfect
for production applications that need to be both
smart and economical.

Complex, multi-step reasoning and
frontier code generation

+ Model profile: An advanced reasoning model
like Gemini 3 Pro.

« Rationale: Our most intelligent model, for multimodal
understanding, and our most powerful agentic and
vibe-coding model.?

3. Gemini 3 Pro tops the LMArena Leaderboard with a breakthrough score

of 1501 Elo. It demonstrates PhD-level reasoning with top scores on Humanity’s
Last Exam (37.5% without the usage of any tools) and GPQA Diamond (91.9%).
It also sets a new standard for frontier models in mathematics, achieving a new
state-of-the-art of 23.4% on MathArena Apex. Results as of November 2025.

Google Cloud

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-lite
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/3-pro

e . N ”) ”)
(_Section 1: Core concepts of Al agents) (Section 2) (Section 3) ﬁ

You can use the Gemini family of models to break down

problems, formulate plans, and use tools. This reasoning @ Pro tip

process is configurable. By allocating more reasoning

tokens to a specific call, a developer can direct the model Use Model Garden on Vertex Al to discover, customize,
to expend more computational effort, directly trading and deploy foundation models from a single, centralized
a predictable increase in latency and cost for a potential platform. It provides a curated selection of over 200
increase in accuracy. models from Google, partners like Anthropic, and a wide

variety of open models from providers like Meta (the
Llama family) and Mistral. Instead of manually managing
infrastructure, you can deploy models to applications
with a single click and scale them using built-in,
end-to-end MLOps capabilities.

This token-level control, combined with model selection and
configurable reasoning modes, gives developers a dynamic
set of levers for sophisticated optimization. The cost and
performance of an entire multi-agent system can be calibrated
to meet specific business and technical requirements.

Google Cloud 10

https://cloud.google.com/model-garden

(Section 1: Core concepts of Al agents

Model tuning

Once you select a model that fits your cost-latency-quality
needs, you may have the option to fine-tune it. This specializes
its knowledge and style for your specific business needs,
and is done using a curated dataset of your own
high-quality examples.

The availability of fine-tuning is determined on a model-by-
model basis. Within Google’s model portfolio, this capability is
supported for the Gemma family of open-weight models and
for specific versions of Gemini. It is important to review each
model's documentation and license agreement to confirm that
fine-tuning is both permitted and technically supported.

To see which models can be fine-tuned on Vertex Al,
check the official documentation.

Tools: Enabling agentic action

Tools are defined capabilities that enable an agent to do more
than the native functions of its core reasoning model, from
performing a simple, internal calculation to interacting with
external systems via API calls. They bridge the gap between
the agent’s reasoning and its ability to retrieve new information
or execute stateful operations.

Tools can include a wide variety of components:

« Internal functions and services: Proprietary logic written
by your own team.

» APIs: Connections to both internal services and external,
third-party services.

+ Data sources: The ability to query databases, vector stores,
or other repositories of information.

« Other agents: In a multi-agent system, one agent can
use another specialized agent as a tool.

coction o) (Cectiona)
‘\Sectlon 2/‘ ‘\Sectlon 3/‘

9 Use case

Fine-tuning a support agent

Say you're building a customer support agent for
your SaaS product. You could fine-tune on a dataset
of thousands of past support tickets and their ideal
resolutions to help the model learn about common
issues and respond in a voice that aligns with your
support team’s style.

Fine-tuning is not grounding. Fine-tuning adapts

a model’s style and refines its knowledge on a specific
task. Grounding connects the model to real-time,
verifiable data sources to ensure its responses are
factually accurate. Model grounding is discussed

in detail below.

Google Cloud

1N

https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models

(Section 1: Core concepts of Al agents)

(Section2) (Section3

Data architecture for agentic systems

Data serves as the basis for an agent’s short-term and long-term memory. A robust data architecture must address three
distinct needs: persistent storage for long-term knowledge retrieval, low-latency access for short-term conversational
context, and a durable ledger for transactional auditing. By mapping specific Google Cloud services to each of these needs,
you can ensure that every architectural decision is both cost-effective and scalable, while addressing immediate business
needs and time-to-market goals.

1. Long-term knowledge base (grounding and retrieval)

An agent’s long-term memory is the foundation for its intelligence, grounding, and personalization. It is distinct from

the fast, short-term context of a live conversation. A robust long-term memory architecture should comprise three core
components: a structured knowledge base for fact-based grounding via retrieval-augmented generation (RAG); a persistent
store for user interaction history to enable a continuous, personalized experience; and, an operational data lake for raw
material like conversation transcripts and workflow states, for more complex cognitive processes and future analytics.

Data service

Overview

Startup use cases

Vertex Al Search

A managed service for building high-performance
vector search applications. It is the primary tool for
enabling semantic understanding and retrieval over
large, unstructured datasets.

Instantly find answers within your internal product
documentation, customer support chat logs, and
community forum posts, so your agent can provide
accurate, context-aware support to new users.

This reduces the burden on your small support team.

Firestore

A serverless NoSQL document database with real-time
synchronization capabilities. Its flexible, hierarchical data
model is well-suited for storing structured context and
the dynamic state of an agent’s long-running or durable
state active tasks.

Maintain the real-time state of a multi-step, agent-
guided user onboarding flow. As the user completes
each step (e.g., “create profile,” “connect API,” “invite
team member”), the agent updates a Firestore
document. Developers can then observe the agent’s
task progress in real-time, and the user can seamlessly
resume the process across sessions.

” “

Vertex Al Memory

Bank (Preview)

A managed service on Vertex Al Agent Engine
specifically designed to dynamically generate,
store, and retrieve long-term memories from user
conversations.

Instead of manually building logic to extract user
preferences, an agent can automatically call
GenerateMemories on a conversation history.

This asynchronously extracts key facts (e.g., “user
prefers non-stop flights,” “user’s dog is named Fido”)
and stores them. In future sessions, the agent can
retrieve these memories via similarity search to provide
a deeply personalized and continuous experience with
minimal custom code.

Cloud Storage

A highly scalable and durable object store for raw,
unstructured source data (e.g., PDFs, images, videos)

that feeds into other services for indexing and processing.

It serves as the durable, low-cost landing zone for all
user-uploaded documents, images of bug reports,

or audio recordings of customer feedback calls. This
raw data is then processed and indexed by services
like Vertex Al Search to enrich your agent’s knowledge.

BigQuery

A fully-managed, serverless data warehouse for storing
and analyzing massive structured and semi-structured
datasets, so agents can be equipped with tools that
execute complex analytical queries.

An agent can ask questions like, “Summarize user
engagement patterns for the new feature we launched
last week,” or “Which customer cohorts have the highest
churn risk based on recent activity?” BigQuery provides
instant business intelligence.

Google Cloud

12

https://cloud.google.com/enterprise-search#features
https://cloud.google.com/products/firestore
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/overview
https://cloud.google.com/storage
https://cloud.google.com/bigquery

(Section 1: Core concepts of Al agents)

(Section2) (Section3

2. Working memory (conversational context and short-term state)

This layer manages the transient information required for an ongoing task or conversation.
It must provide extremely low-latency access to maintain a responsive user experience.

Data service

Overview

Startup use cases

Memorystore

A fully managed, in-memory data store providing
sub-millisecond latency. It is ideal for caching frequently
accessed data and managing session state.

Its primary role is high-speed caching to store the
results of any computationally expensive or high-latency
operation. Instead of repeatedly executing a costly task
such as an LLM API call, a complex database query,

or a call to a third-party service, the agent first checks
Memorystore for a cached result. It drastically reduces
both response latency and recurring operational costs,
both critical to a startup’s agentic system.

3. Transactional memory (state management and action auditing)

This layer is responsible for recording actions and state changes with strong consistency and integrity.
It serves as the system of record, often requiring ACID guarantees to ensure reliability.

Data service

Overview

Startup use cases

Cloud SQL

A fully managed service for traditional relational
databases that provides strong consistency for single-
region transactional workloads. It is the standard choice
for reliable state management.

When an agent successfully executes a critical business
action, such as processing a subscription payment

or provisioning a new service for a user via an API call,

it writes a record to a Cloud SQL database. This creates
a permanent, ACID-compliant audit log, ensuring

every important agent-driven action is reliably

tracked and verifiable.

Cloud Spanner

A globally distributed, strongly consistent relational
database offering horizontal scalability. It is designed for
mission-critical applications that require high availability
and transactional integrity across geographic regions.

A startup would typically migrate from Cloud SQL to
Spanner only after achieving product-market fit where

its user base becomes globally distributed. For example,

a travel or ecommerce app that initially used Cloud SQL
now needs to process bookings or orders from users

in North America, Europe, and Asia simultaneously
without data conflicts. Spanner’s global transactional
consistency supports this scale.

Google Cloud

13

https://cloud.google.com/sql
https://cloud.google.com/spanner
https://cloud.google.com/memorystore

(Section 1: Core concepts of Al agents) (Section2) (Section3

Agent orchestration:
The executive function

Orchestration is the operational core that guides an agent As the agent'’s executive function, you can apply
through a multi-step task. For any process that requires the orchestration to be responsible for planning
more than a single action, it determines which tools are and decision-making. And, by automating complex
needed, in what sequence, and how their outputs should business processes, it creates powerful leverage
be combined to achieve a final goal. for small startup teams.

Orchestration concepts
and cognitive architecture

A common and effective orchestration pattern is Here’s how it works:
ReAct (Reason + Action), a framework that synergizes the

. . g 1. Reason: The agent assesses the goal and the current state,
reasoning and acting capabilities of large language models.*

forming a hypothesis about the next best step and whether
ReAct establishes a dynamic, multi-turn loop where the a tool is required.
model generates both reasoning traces (thoughts) and

2. Act: The agent selects and invokes the appropriate tool.
task-specific actions in an interleaved manner. This allows 9 PRI

for greater synergy—reasoning helps the model track and 3. Observe: The agent receives the output from the tool.
update action plans, while actions gather information from This new information is integrated into the agent’s context
external tools to inform the reasoning process. and feeds into the next Reason step of the cycle.

4.Yao, S., Zhao, J., Yu, D., Du, N., Shafran, |., Narasimhan, K., & Cao, Y. (2023).

ReAct: Synergizing Reasoning and Acting in Language Models.
Published as a conference paper at ICLR 2023.

Google Cloud

https://arxiv.org/abs/2210.03629

(Section 1: Core concepts of Al agents) (Section 2) (Section 3)

Example: Processing a refund with
ReAct orchestration

Reason: The user wants a refund. The first step
is to understand the company’s rules for refunds.

Act: Use the semantic_search tool to query the internal
knowledge base with “refund policy.”

Observe: The tool returns: “Full refunds are available
for all products within 30 days of the purchase date.”

Reason: The policy requires the purchase date.
This information for the user’s specific order must
come from the CRM.

Act: Call the get_order_details function from the
CRM tool with the user’s ID.

Observe: The function returns an order object,
including purchase_date: 2025-07-20'.

Reason: The current date is July 29, 2025. The purchase
was 9 days ago, which is within the 30-day window.
The criteria are met, and the refund can be initiated.

Act: Call the process_refund tool with the order
ID and refund amount.

Observe: The tool returns status: ‘success’.

Final answer: “Your refund has been processed
successfully. You should see the amount credited
to your account within 3-5 business days.”

9 Use cases

» Automated customer onboarding: An agent could
be orchestrated to guide a new user through setup.
It might first use a tool to create a new account via an
API, then use a send_email tool to deliver a welcome
message, and finally use a tool to check the database
to confirm the user has completed their first action,
triggering a follow-up prompt if they haven't.

+ Proactive system monitoring and remediation:
An orchestration could be triggered by a monitoring
alert. First, the agent gets more context by using
a tool to query logs from Cloud Logging. Based on
the logs, it might then decide to use a kubectl tool
to restart a specific pod in GKE, and finally use
a slack_notification tool to report the action to the
on-call channel.

» Complex lead qualification: A sales agent could
be orchestrated to enrich a new lead’s email with
company data from an API. It would use a tool
to search the internal CRM to see if the lead is an
existing customer. It would then use the collected
information to decide whether to assign the lead
to a senior sales representative or add them to
a nurturing sequence.

Mastering orchestration is the key to moving beyond
simple, single-shot agents. When you get it right, you create
sophisticated, autonomous systems that can tackle problems
that, previously, were not technically feasible. It unlocks

a new class of applications and user experiences.

(Section 1: Core concepts of Al agents (Section 2> (Section 3>

Runtime: Deploying agents
at scale

Deploying a functional agent prototype into a production
environment requires a robust runtime infrastructure.

The runtime facilitates agent deployment at scale, turning

a prototype into a reliable product that handles complex
operational requirements like security, load balancing,

and error handling, especially during periods of unpredictable
user growth.

e Use cases

Your choice of runtime directly impacts operational

Runtime concepts and architecture overheads and your ability to scale.

A production-grade runtime environment for Al agents must
provide several core capabilities:

» Vertex Al Agent Engine: A seed-stage startup with
a small engineering team deploy their first customer
support agent, going from a working prototype
to a scalable, secure production endpoint in days
instead of weeks.

« Scalability: The infrastructure must automatically scale
to handle variable loads, from zero to millions of requests.
This includes both request-based load balancing and

resource-based autoscaling to manage computational « Cloud Run: A startup experiencing rapid but

demands efficiently.

« Security: The runtime must provide a secure execution
environment, managing identity, network access controls,
and secure communication channels (e.g., TLS) to protect
the agent and the data it accesses.

+ Reliability and observability: The system must include
mechanisms for error handling, automatic retries,
and comprehensive monitoring. This involves logging
agent actions and tool outputs, and collecting metrics
on performance and resource utilization to diagnose
and resolve issues.

unpredictable growth for their new Al-powered
feature deploy their ADK agent on this serverless
architecture, so they only pay for compute
when the agent is actively processing requests.
It's a cost-effective way to handle traffic spikes
without over-provisioning infrastructure.

« Google Kubernetes Engine (GKE): A Series B
startup with an established platform engineering
team and dozens of microservices decide to host
their new internal automation agent on their existing
GKE cluster. This way, they can use established
CI/CD processes, security policies, and monitoring
dashboards, ensuring the agent adheres to the
same operational standards as the rest of their
production services.

Google Cloud

16

(Section 1: Core concepts of Al agents >

coction o) (Cectiona)
‘\Sectlon 2/‘ ‘\Sectlon 3/‘

1.3 The role of grounding
in agentic systems

An agent’s credibility and usefulness depends on its ability

to provide accurate, trustworthy answers based on verifiable
facts, a process known as grounding. This section explores the
evolution of grounding techniques, providing a roadmap for
building increasingly sophisticated and reliable agents.

We begin with the foundational pattern of RAG, which grounds
an agent by retrieving text based on semantic similarity.

We then explore GraphRAG, which enriches grounding by
understanding the explicit relationships between data points
in a knowledge graph. Finally, we cover Agentic RAG, where
the agent is no longer a passive recipient of information but

an active, reasoning participant in the retrieval process itself,
capable of executing multi-step strategies to find the best
possible answer.

RAG: A foundational first step

The first step on the path to sophisticated grounding is the
architectural pattern of RAG. This approach enhances an LLM’s
responses by retrieving relevant information from an external
knowledge base before generating an answer. Instead of
relying solely on its pre-trained knowledge, the agent performs
a semantic search to find verifiable data, which is then passed
to the LLM as context. This ensures a baseline of grounded,
verifiable answers.

While foundational, this simple retrieve-then-generate process
treats knowledge as a flat collection of disconnected facts. It is
a powerful technique for direct question-answering, but it falls
short on complex queries that require a deeper understanding

of the relationships between data points.

Benefits of RAG for agentic systems

- Agents can access the latest information: The retrieved
info is more current than their last training date, enabling
more timely and relevant agentic behavior.

+ Agents are more accurate: RAG significantly reduces the
risk of outputs that could lead to incorrect or inappropriate
agentic actions.

« Faster responses: Vector embeddings and specialized
databases enable lightning-fast semantic searches of
massive datasets, so agents can deliver more responsive,
timely decisions.

» More comprehensive agent awareness: The RAG
workflow, which consists of ingesting, parsing, chunking,
embedding, storing, and retrieving, can be applied to
text, images, and other types of data. With this deeper
understanding, agents can perform more complex,
multistep reasoning tasks.

Google Cloud’s managed, out-of-the-box RAG solution is
called Vertex Al Search. It simplifies the process of integrating
data sources, and can also use open source or third-party
tools. Vertex Al RAG Engine provides a data framework

for developing context-augmented LLM applications that
deliver accurate, controlled responses aligned with specific
knowledge and policies. This is ideal for critical startup
applications like customer support, internal knowledge
management, and compliance-related tasks.

Google Cloud 17

https://cloud.google.com/enterprise-search
https://cloud.google.com/vertex-ai/generative-ai/docs/rag-engine/rag-overview

(Section 1: Core concepts of Al agents)

coction o) (Cectiona)
‘\Sectlon 2/‘ ‘\Sectlon 3/‘

Vertex Al RAG Engine at work

Use Vertex Al Search and Vertex Al RAG Engine
to ground responses using your proprietary content.

Vector databases:
Search by meaning

The ability to search by meaning, not just keywords,

is made possible by vector embeddings. These numerical
representations capture the conceptual essence of data
(Iike text and images), allowing a system to find relevant
information no matter how a question is phrased.

Vector databases are the infrastructure that makes this
possible at scale. They are highly specialized systems
designed to store, index, and query millions of these
embeddings with the extremely low latency required
for a responsive agentic system.

Here’s how it works:

1. Data is transformed into vector embeddings:
The ML model places semantically similar items
close together in a multidimensional vector space.

2. Storage and indexing: The vector database stores
these embeddings and builds specialized indexes
to enable fast and efficient similarity searches.

3. Querying: The user’s query is converted into an
embedding using the same model. The database
then finds the embeddings in its index that are closest
to the query embedding, effectively retrieving the
most semantically relevant information to ground
the model’s response.

Use the check grounding API to verify whether the
Al's answers are based on grounded, up-to-date info.

e Use case

Enhancing customer support

A shoe company uses a vector database with semantic
search to power a customer support chatbot:

+ Product descriptions, warranty information, and FAQs
are all converted into embeddings and stored.

» The vector database understands that “good for people
with wide feet” is semantically related to concepts like
“wide fit,” “extra wide,” or “comfortable for wide feet.”

« It retrieves relevant product recommendations and
provides a much better customer experience.

Compare this to if the shoe company used a traditional
database. A query using LIKE ‘“%good for people with wide
feet% would fail to return any results because that exact
phrase does not exist in the database.

Google Cloud

18

https://ai.google.dev/gemini-api/docs/embeddings
https://cloud.google.com/discover/what-is-a-vector-database
https://cloud.google.com/generative-ai-app-builder/docs/check-grounding

(Section 1: Core concepts of Al agents) (Section 2) (Section 3)

GraphRAG: Smarter grounding

GraphRAG builds a knowledge graph, so instead of just
matching similar phrases, your agent understands how
concepts relate.

The hierarchy of knowledge in GraphRAG

e Use case

A medical Al assistant that needs to know
“symptoms - causes - treatments”
and not just retrieve related snippets.

Application
users
Region
Data ingestion Serving
subsystem il:li Embedding API il:l; Gemini API subsystem
. L7 Vertex Al L7 Vertex Al
Data files .
T%] Cloud Storage ~ ~ Agent o= I
,,,,,,, ? [=] bucket : Agent Development Kit :
, | Embeddings o
v M | G
" " Knowledge graph ! .
o 1« File queue N > File processor] o) VertexAl (===t i
"o Pub/Sub /¥ Cloud Run Somaecemaesoaeassy "7 == AgentEngine Cmmmm >
/)*(\ Cloud Run jobs Embeddings Knowledge “I Monitoring E Logging

Cloud Spanner

config graph

:|j Embedding API

Vertex Al

: Gemini APl

Vertex Al

8 1AM

Google Cloud

19

https://cloud.google.com/architecture/gen-ai-graphrag-spanner

(" Section 1: Y (section2) (Section3)
(_Section 1: Core concepts of Al agents) (_Section2) (Section3)

Agentic RAG: Dynamic
reasoning and retrieval

The most powerful approach to grounding is Agentic RAG,

a technique that helps you transform the agent from a passive
recipient of retrieved data into an active, reasoning participant
in the search for knowledge. Following frameworks like ReAct,
the agent can analyze a complex query, formulate a multi-step
plan, and execute multiple tool calls in sequence to find the
best possible information.

A prime example of this agentic pattern is grounding with
Google Search. You can use the Gemini 3 family of models

to integrate advanced reasoning, allowing them to interleave
search capabilities with internal thought processes to answer
complex, multi-hop queries and execute long-horizon

tasks. The agent can help you handle the entire workflow
automatically: it analyzes the prompt, formulates and executes
precise search queries, and synthesizes a final, grounded
response with sources.

An agent built with the Gemini family of models moves
beyond simple content recognition to active, multi-step
problem-solving. For example, an agent could:

+ Analyze a photo to identify a specific species of plant and
then autonomously retrieve its detailed care instructions.

+ Process an audio stream from a support call to not
only transcribe the words but also determine the
customer’s sentiment, such as frustration, to escalate
the ticket properly.

This ability to perceive and reason across different data
types transforms the agent from a data processor into
a problem-solving tool that understands and interacts
with the world in a more complete way.

éé

The conventional wisdom was that
foundation model performance would
improve exponentially, but we are
reaching the inflection point where that
climb is plateauing and real differentiation
lies in specialization and context
engineering. Agentic RAG forms a central
pillar of the context layer, allowing Al
agents to iteratively find, retrieve, and
reason over ground truth data before
generating a final answer.

The future is multi-LLM: different
models for different tasks, connected
by a model- and data-agnostic context
layer that unlocks their full potential.”

Douwe Kiela
CEO of Contextual Al

Google Cloud 20

(Section 1: Core concepts of Al agents)

(Section2) (Section3

Example: Real-time inventory check

Define a function called check_inventory that takes

a product_|ID and returns the current stock levels from
your real-time inventory system. Similarly, another
function, check warranty_status, could take a product_ID
and return its warranty information directly from your
warranty management system.

Then, when a customer asks about a specific product’s
availability, the Al agent:

1. Ildentifies the product: It uses semantic search
(powered by the vector database) to accurately
identify the specific shoe model the customer
is asking about, even if they describe it vaguely.

2. Triggers the action: It recognizes the need for real-time
stock information and uses function calling to invoke
your check_inventory function.

2

Functions

“Are the new et ook
SolarFlare runners r--> (_ product_lookup
instock?” @ ------

The Agentic RAG workflow on Google Cloud

Google Cloud provides managed services that handle the
entire Agentic RAG workflow:

+ Generating embeddings and indexing: The first step is
to convert your data into vector embeddings. An option
is the Gemini Embedding model, which is available in
both Vertex Al and the Gemini APl and supports over 100
languages. This and other models are part of the broader
Vertex Al Embedding APIs suite.

« Storing and indexing: The vector embeddings are then
stored and indexed in Vertex Al Vector Search. This is a
fully managed, high-performance vector database that
automatically builds the specialized indexes required for
fast and efficient similarity searches at scale.

+ Retrieval and reasoning: When a user submits a query,
it is converted into an embedding and used by Vertex Al
Vector Search to find the most relevant information. This
targeted context is then passed to the LLM to generate
the final, grounded response.

3. Provides real-time response: The check_inventory function
executes, fetches the live stock data from your inventory
system, and returns it to the Al agent. The agent then
provides the customer with an immediate, accurate response
about availability.

This combination of retrieval (knowing what information
is relevant) and actions (performing real-time operations)
makes your Al agents smarter, faster, and much more useful.

Use Vertex Al and Google Cloud'’s vector search to add
this to your agent.

Tools

Vector database ¥ -- “Yes! The So!arFIare

‘ runners are in stock.
mmmms----- We have 82 pairs
Inventory system <- - available right now.”

Use the retrieve and re-rank approach.

Address the trade-off between recall (finding all relevant
documents) and precision (ensuring every retrieved
document is relevant) using the two-step “retrieve and
re-rank” approach (shown in this agentic_rag sample).
First, it widens the recall aperture by configuring Vertex
Al Vector Search to retrieve a larger-than-needed set of
candidate documents. Second, this larger set is passed
to the LLM or a specialized re-ranking service, which
identifies the most relevant documents and discards any
that are irrelevant or semantically opposite.

Google Cloud

21

https://ai.google.dev/gemini-api/docs/embeddings
https://github.com/GoogleCloudPlatform/agent-starter-pack/tree/main/agents/agentic_rag

(Section 1: Core concepts of Al agents) (Section 2) (Section 3)

From retrieval to reasoning:
A strategic advantage

Agentic RAG represents a fundamental leap, moving beyond
simple information retrieval to genuine problem-solving.

By empowering the agent to be an active, reasoning participant,
developers can build systems capable of executing the
complex, multi-step queries and long-horizon tasks that define
next-generation agentic capabilities.

For a startup, mastering this approach is the key to building
a defensible, truly intelligent product that can unlock novel
workflows and user experiences.

Example: Grounding with Google Search

Other grounding methods

While RAG is a foundational technique, Vertex Al offers
other ways to ensure your agents deliver accurate, reliable
responses. For example:

» Grounding with Google Search: Connect your model
to world knowledge and a wide possible range of topics.

» Grounding with Google Maps: Use Google Maps data with
your model to provide more accurate and context-aware
responses to your prompts.

+ Grounding Gemini to your data: Use RAG to connect
your model to your website data or your sets of
documents.

» Grounding Gemini with Elasticsearch: Use RAG
with your existing Elasticsearch indexes and Gemini.

When you use the Google Search tool, the model handles the entire workflow of searching,

processing, and citing information automatically.

Gemini

-
1
1

~ .
O —{ Who won the Euro 20247 }—> Q Decides to search or not
Y,

Google Search tool

-
1
1
1
1
1
1
1
1

“who won euro 2024”]

I
I e ~
: Query generation: :
O [“UEFA Euro 2024 winner”, O Searches the web
! [
| J I

Q Synthesizes answer using search results

|

|

|

|

|

|

|

1 ! ,/ N 1
| | |
: O % Search results, snippets, metadata }7 Q
| | |
1 1 A 4

| |

|

|

|

|

|

|

|
N :
O Spain won Euro 2024, defeating Q
England 1:2 in the final :
/

1. User prompt: The application sends the prompt
to the Gemini APl with the Google Search tool.

2. Prompt analysis: The model analyzes the prompt and
determines if a Google Search can improve the answer.

3. Google Search: If needed, the model automatically
generates one or multiple search queries and
executes them.

4. Search results processing: The model processes
the search results, synthesizes the information,
and formulates a response.

5. Grounded response: The API returns a final,
user-friendly response that is grounded in the search
results. This response includes the model’s text answer
and grounding metadata containing the search queries,
web results, and citations.

Google Cloud 22

http://
https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-google-search

CSection 1: Core concepts of Al agents)

(:Section 2) :Section 3)

Key takeaways:
Choosing your Al agent’s
components

Your goal

Best option

Choose the agent’s
core intelligence.

Select a model (e.g., Gemini) based on your use case
and fine-tune it with your specific data.

Make your agent trustworthy

and factual.

Use grounding techniques like RAG with a vector database
so it checks facts, not just guesses.

Manage a complex task
with multiple steps.

Use orchestration to create a plan that determines which
tool to use, in what order, and how to combine the results.

Connect to public,

real-time data and services.

Use pre-built extensions to easily plug into third-party APIs.

Connect securely to your

own internal tools.

Write custom functions to give the agent controlled access
to your private databases, CRMs, or other internal systems.

Deploy a reliable and safe

product at scale.

Use a managed runtime for scalable infrastructure, plus
built-in evaluation and safety tools to monitor performance
and block harmful content.

Google Cloud

CSection 1: Core concepts of Al agents) (‘section2) (‘Section3)

Ready to turn your
Al vision into reality?
We're here to help.

Learn how to build more generative Al applications
with on-demand Startup School sessions.

Get up to $350k USD in Google Cloud credit
with the Google for Startups Cloud Program.

Apply now

Contact our Startups team.

Get in touch

Stay connected and get all our latest updates by
subscribing to the Google Cloud Startup Newsletter.

Subscribe

Google Cloud 24

https://bit.ly/4mjQfLw
https://cloud.google.com/startup/apply?utm_source=cloud_sfdc&utm_medium=et&utm_campaign=FY21-Q1-global-demandgen-website-cs-startup_program_mc&utm_content=ai-agent-report-cta&utm_term=-
https://cloud.google.com/contact/form?utm_source=google_start_up&utm_medium=et&utm_campaign=Global-Cloud-Platform-Website-Leads&utm_content=ai-agent-report-cta&utm_term=-
http://goo.gle/4muyMQ8

Section 2

How to build
Al agents

(Section 1 > <Section 2: How to build Al agents D (Section 3>

The previous section defined the fundamental
components of a modern agentic system: a core
reasoning model, a set of tools to enable action,

data architecture options to persist short-and
long-term agent memory, a grounding mechanism

to ensure factual accuracy, and deployment options.

With this conceptual framework established, we can now
shift our focus to how you build an agent. This section
provides an opinionated, practical guide to the architectural
decisions involved in building a production-ready agent.

Open and flexible, the Google Cloud ecosystem recognizes
the industry offers many excellent frameworks. Here,
however, we intentionally focus on ADK, a complete, robust
implementation that fits perfectly in the Google Cloud
ecosystem. We also make specific recommendations built
upon open industry standards like the Model Context
Protocol (MCP) and the Agent2Agent (A2A) protocol.

®) Prefer audio? Listen to the podcast version
of this section, created with NotebookLM.

Before building your agent, explore 601 real-world agent
use cases from the world’s leading organizations.

This podcast was created using NotebookLM with the
prompt: “As a podcast host, create a practical podcast,
targeting developers and technical founders. The podcast
should introduce Agent Development Kit (ADK) as a solution
to common agent-building challenges. It needs to detail
ADK'’s core benefits and explain its primary agent types,
such as the intelligent LimAgent and structured Workflow
Agents (e.g., Sequential, Parallel, and Loop).

“The podcast must then cover the broader ecosystem,
including the Model Context Protocol (MCP), Vertex Al

Agent Engine for deployment, and the Agent2Agent (A2A)
protocol for communication. Briefly mention alternative tools
like Google Agentspace, Firebase Studio, and Gemini CLI,
and conclude with a summary and a call to action directing
listeners to Google’s startup resources.”

Google Cloud

26

https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders?e=48754805
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders?e=48754805
https://goo.gle/3JXsE4J

(Section 1 > <Section 2: How to build Al agents D (Section 3>

2.1 A complete toolkit
for building Al agents

When it comes to building a custom Al agent for your
startup, founders face a critical trade-off: development
velocity versus flexibility.

At one end, you have easy-to-use solutions like low-code
platforms or pre-built products. These are fast to implement
but give you less control, making them best for standard
problems. At the other end, you have highly flexible
frameworks or the option to build everything from scratch.
While these give you maximum ability to customize,

they require more significant development resources and
deep technical expertise. ADK sits in the middle of this
development landscape.

Explore ADK

Core components for building Al agents

Open-source, code-first toolkit for building,

(D) i
Agent Development Kit evaluating, and deploying Al agents.

<>

Open protocol that standardizes how

@ Model Context Protocol applications provide content to LLMs.

Managed platform to deploy, manage, and scale

Q Vertex Al Agent Engine Al agent in production.

€2 Agent2Agent (A2A) protocol

and collaboration between Al agents.

NI NG/

Open standard designed to enable communication

Google Cloud

27

https://google.github.io/adk-docs/

("Section 1) <Section 2: How to build Al agents) (Section 3)

Develop with ADK

If you need more power than a simple low-code tool but
want an accelerated development process, ADK gives you
the control to build a unique system of collaborative agents
while simplifying complex technical challenges. For example,
specific protocols like MCP and A2A make it easier for agents
to extend their capabilities (as we’ll explore below).

What's more, ADK complements the tools your team may
already use and integrates with the broader Google Cloud
ecosystem, so you're not locked into a single approach.

This flexibility extends to how you run your agents once they're
built, with options to deploy to a fully managed service like
Vertex Al Agent Engine or to a versatile serverless platform

like Cloud Run. It’s all about choosing the right foundation for
your specific operational needs.

Building complex workflows gets easier with ADK

1

User prompts agent

Agent

4

. Model interprets tool B's
output, generates the agents
response to the user

What you can do with ADK
1. Build complex, collaborative Al systems

ADK is multi-agent by design. It's easy to build highly
specialized Al solutions that automate complex, multi-step
workflows. And, with flexible orchestration (sequential,
parallel, or dynamic), you can start with simple automations
and evolve to highly adaptive systems. For example, you
can build an intelligent project management system with

a “Task Breakdown Agent” that delegates sub-tasks to
specialized “Code Generation Agents,” “Design Agents,”
and “Documentation Agents”.

éé

We are focused on building a flourishing

Al agent ecosystem. The open source

Agent Development Kit has had over a million
downloads in less than four months.”

Sundar Pichai
CEO of Google and Alphabet

2 4

. Model selects Tool B and
formats tool request body {}
(“function-calling”)

----- Model

3 Tools

Agent framework ...
calls tool B {} A B @

2. Integrate Al into existing tools, agents, and workflows

ADK is built around a rich tool ecosystem that allows your
agents to interact with all your existing tools and data. You
can connect your agents to productivity tools you already
use, like Notion, Slack, or a CRM, as well as tool frameworks
like LangChain and Llamalndex, or agent frameworks like
LangGraph or CrewAl. Tools can be shared with MCP and
the agents you create can be shared with A2A. This way, you
can inject Al intelligence into every facet of your operations,
enhancing the tools and systems you already have in place
without requiring a disruptive architectural overhaul.

Google Cloud

28

("Section 1) (Section 2: How to build Al agents) (Section 3)

3. Ensure quality and reliability from day one

To earn users’ trust, it’s critical to carefully test and evaluate
your agents before deploying them to production. ADK's built-
in observability and evaluation tools help you:

+ Rapidly iterate: Before deploying, you can systematically
test how your agents respond to various scenarios and
how well they execute complex tasks.

+ Debug agent behavior: Inspect the full execution trace
of your agent including its reasoning (thoughts), tool
calls, and observations to understand its decision-making
process and debug complex, multi-step workflows.

« Benchmark your agents: Evaluate different agent
designs or model updates against predefined metrics,
using a data-driven approach to continuously improve
agent performance.

This moves your process beyond simple “vibe-testing,”
allowing you to launch professional-grade agents quickly,
build user trust through proven reliability, and iterate with
data-driven confidence.

4. Scale Al with confidence

As you grow, your Al solutions need to scale seamlessly
without becoming a bottleneck. ADK accelerates the path
to production by using AgentOps (described in detail below)

to bridge the gap between local development and deployment.

The framework exposes agents as standard web services
using FastAPI, which can then be containerized. This frees
your developers from having to build custom deployment
infrastructure. They can deploy anywhere, from local testing
to fully managed, auto-scaling runtimes like Vertex Al Agent
Engine or Cloud Run.

ADK core: Agent architectures

A foundational step in building with ADK is selecting the right
agent architecture. Distinct agent classes are designed for
different execution patterns, and your choice will determine
how your agent reasons and operates. It's typically a trade-off
between the flexible, non-deterministic power of an LLM and
the predictable, deterministic control of hard-coded logic.
Understanding the interplay between these agent classes

is key to building robust and effective Al systems.

ADK'’s agent types are organized into three categories

©
(=]

BaseAgent

Extended by

'
v

@ .v-based

LiImAgent (Reasoning,

tools, transfer) FHEUENE R

Extended by

e Workflow agents

ParallelAgent

Extended by

v v

e Custom logic

LoopAgent CustomAgent

Primary agent types

Google Cloud

29

(_Section 1) (Section 2: How to build Al agents) <Section 3) n

0 LLM agent (LimAgent)

Core engine: LLM This is the most common agent type and is commonly referred to as simply “Agent.”
A N It uses an LLM like Gemini for complex reasoning, dynamic decision-making, and natural
Determinism: Non-deterministic . . .
(ol language understanding; and it forms the core of most conversational and problem-
solving agents.

e Workflow agent (SequentialAgent, ParallelAgent, LoopAgent)

Core engine: Predefined logic These orchestrators deterministically control how other agents execute in predefined

.. e atterns. They're used for structured processes.
Determinism: Deterministic P yreu uctu P

(predictable) Sequential agents (SequentialAgent)

Executes sub-agents in a fixed order, passing the output of one as the input to the next.
Agent A completes Task 1, then passes its output to Agent B for Task 2.

SequentialAgent

sub_agents_1 sub_agents_2

Input @ @ @ - -] Output
| [|

Arrows indicate execution and not
state share (communication)

Example: You want to build an agent that can summarize any webpage, using two tools:
Get Page Contents and Summarize Page. Because you can’t summarize from nothing,
the agent must always call Get Page Contents before calling Summarize Page.

Get the full code

Google Cloud 30

https://google.github.io/adk-docs/agents/workflow-agents/sequential-agents/#full-example-code-development-pipeline

e .
(Section 1)

(Section 2: How to build Al agents D (Section 3>

Parallel agents (ParallelAgent)

This executes multiple sub-agents simultaneously. This is used for performance
optimization when tasks are independent. Agent A and Agent B work on independent
sub-tasks simultaneously, and their results are combined.

ParallelAgent

PR & subagents 1 -------ooooooooeoe- > Output_1 J
Input e foe> & subagents 2 ooooeooooooooooo > Output_2 J
L, O subagents3 -ooeeecoeeooeea > Output_3 J

Example: For operations like multi-source data retrieval or heavy computations,
parallelization yields substantial performance gains. Importantly, this strategy assumes no
inherent need for shared state or direct information exchange between the concurrently
executing agents.

Get the full code

Loop agents (LoopAgent)

A workflow agent executes its sub-agents in a loop (iteratively). It repeatedly runs

a sequence of agents for a specified number of iterations or until a termination condition
is met. Use the LoopAgent when your workflow involves repetition or iterative refinement,
such as revising code.

LoopAgent

se------io> & sub agents 1

‘ ® ‘

@ sub_agents_2 -

® ‘

Input Q subagents 3 ------- Output
! ~ :

v
NS,

Q subagents 4 -------

£ Loop
max_iterations=2

N /

Example: You want to build an agent that can generate images that contain specific
amounts of food (e.g., five bananas), using two tools: Generate Image, Count Food
[tems. Because you want to keep generating images until it either correctly generates
the specified number of items, or after a certain number of iterations, you should
build your agent using a LoopAgent.

Get the full code

Google Cloud

31

https://google.github.io/adk-docs/agents/workflow-agents/parallel-agents/#independent-execution-and-state-management
https://google.github.io/adk-docs/agents/workflow-agents/loop-agents/#how-it-works

‘/Section 1 D

(Section 2: How to build Al agents) (‘section3)

e Custom agent (BaseAgent subclass)

Core engine: Custom Python code

Determinism: Can be either, based
on implementation

Custom agent (BaseAgent subclass)

For unique requirements and tailored workflows that go beyond a standard reasoning
loop, you can create a custom agent by inheriting directly from BaseAgent and writing

custom Python logic to control its behavior. This approach is necessary when an agent’s
actions are not determined by an LLM, but by specific, hard-coded rules.

How it’'s done: A developer creates a new Python class that inherits from the BaseAgent
class. They must then implement the run_async_impl method, which contains the
unique logic the agent will execute. This method has full access to the session’s state
and can yield events to communicate with other agents or terminate a workflow.

See Gemini Fullstack Agent Development Kit (ADK) Quickstart for an example of how

to implement a Custom agent.

ADK orchestration:
Implementing the ReAct loop

As we discussed in section 1, the ReAct paradigmis a
foundational pattern for agentic systems. ADK provides the
core abstractions and classes needed to implement this
dynamic, cyclical process in a structured way. Its LiImAgent
is specifically designed to execute this loop and handle the
transitions between the fundamental stages in the loop:

+ Reasoning (thought): The LimAgent class manages this
stage internally. It takes the user’s prompt and its current
internal state, then calls the underlying language model
to form a hypothesis and determine the next best action.

« Action (tool use and agent delegation): ADK enables this
stage through its flexible tool system. When the LimAgent
decides to act, it can invoke a simple Python function or,
for more complex tasks, delegate the work to another
specialized sub-agent using the Agent-as-a-Tool pattern.

+ Observation: ADK automatically captures the dictionary
returned by the tool or sub-agent and passes it back to the
LImAgent. This output becomes the new information that
the agent integrates into its context, feeding it into the next
Reasoning step of the cycle.

By providing a native implementation of this essential pattern,
ADK abstracts away the boilerplate code, so you can quickly
translate the powerful concept of a ReAct loop into a working,
multi-step agent.

ADK tools: A framework for agentic action

In ADK, an agent can use tools to perform actions beyond the
native capabilities of its core reasoning model. These defined
capabilities enable an agent to execute code, interact with
external systems, and act outside its own immediate execution
context. A tool is a Python function (or a Java method) that can
either implement self-contained logic or act as a wrapper for
more complex operations, such as making calls to an API, using
MCP to access a variety of external systems, or delegating

a task to another specialized agent locally or remotely via A2A.

This section outlines how to design effective tools and the
taxonomy of available tool types.

For a complete discussion, including code examples and
advanced usage patterns, refer to the ADK documentation.

Google Cloud 32

https://github.com/google/adk-samples/tree/main/python/agents/gemini-fullstack
https://google.github.io/adk-docs/tools/

CSection 1) (Section 2: How to build Al agents) (Section 3)

Designing effective tools:
The API contract for the model

For a model to use a tool correctly, its definition must serve
as a clear and unambiguous API contract, composed of:

+ Function signature: Use descriptive names for tools and
their parameters. Python type hints are mandatory, as they
provide the structural schema the model uses to generate
valid arguments.

+ Docstring (the semantic core): This is the primary source
of semantic information for the model. A well-written
docstring must precisely define the tool’s purpose, usage
criteria, parameters, and expected return schema.

» Return schema: A tool must return a dictionary. While not
a strict syntactic requirement, it is a best practice to include
a status key (e.g., success or error) in this dictionary.
This structure is essential for the agent to reliably distinguish
between successful outcomes and failures in its
Observation step and reason about how to proceed.

- Stateful tools and ToolContext: For tools that need
to read or write to a persistent session state, an optional
tool_context: ToolContext parameter can be added
to the function signature. The agent automatically injects
this object, giving the tool access to a session-level
state dictionary.

For best practices and examples of how to define
parameters and tool schemas, structure effective prompts,
and implement complex, multi-agent workflows, check out
the ADK Samples repository.

A taxonomy of ADK tools

ADK provides a flexible architecture for implementing
tools, ranging from simple functions to interoperable
multi-agent systems.

Toolsets: Packaging related capabilities

A primary pattern in ADK is the Toolset, a class that
bundles a collection of related tools into a single,
configurable object (e.g., BigQueryToolset, MCPToolset).

Custom function tools

This is the most direct method for extending an agent
with proprietary logic.

» FunctionTool: The standard wrapper for synchronous
Python functions.

+ LongRunningFunctionTool: A specialized tool for
asynchronous tasks or human-in-the-loop workflows.

Hierarchical and remote tools

ADK enables the creation of complex systems by
composing agents.

» Agent-as-a-tool: A delegation pattern where a parent
agent uses another specialized agent. This allows the
parent to invoke another agent, receive a response,
and maintain control to handle future input. (This is
distinct from a sub-agent delegation model, where full
conversational control is passed to a sub-agent and
all subsequent input will be handled by the sub-agent.)

« RemoteA2aAgent: For communication between
agents in different processes, ADK provides the
RemoteA2aAgent class, which uses the Agent2Agent
(A2A) protocol to seamlessly integrate distributed
systems.

Pre-built and integrated tools

ADK includes a suite of tools and wrappers to accelerate
development.

« Built-in tools: Ready-to-use tools like Google Search
and Code Execution.

» Google Cloud toolsets: Rich integrations for services
like Vertex Al Search and BigQuery.

» Third-party interoperability: Wrappers like
LangchainTool and CrewaiTool allow for the direct
reuse of tools from popular open-source ecosystems.

Google Cloud

33

https://github.com/google/adk-samples

("Section 1) (Section 2: How to build Al agents) (Section 3)

Standardize with Model
Context Protocol

Model Context Protocol (MCP) is an emerging open standard .

for connecting Al and LLMs with external data sources and
tools. You can plug your Al applications into various data

sources and tools without the hassle of building custom
point-to-point integrations for each one.

Use the open-source MCP Toolbox for Databases to
easily and securely connect your agents to a large array
of popular data sources.

With ADK, your agents can participate in this ecosystem
in two ways:

« Consume external tools: An ADK agent can act as
an MCP client, allowing it to use any tool exposed by
a third-party MCP server.

+ Expose native tools: Developers can wrap their ADK
tools in an MCP server, making them securely available
to any other MCP-compliant agent or application.

MCEP is like a universal adapter for an agent’s data sources and tools

™

AlloyDB
AlloyDB C

MysSQL Postgres | | |

BigQuery

Agents for applications

S

Bigtable

Agent Development Kit

e 4 ~~~"

Cloud SQL

Dgraph
by Hypermode

L e

Spanner

Google Cloud 34

https://googleapis.github.io/genai-toolbox/getting-started/mcp_quickstart/
https://google.github.io/adk-docs/mcp/#mcp-toolbox-for-databases

‘/Section 1 D

(Section 2: How to build Al agents) (‘section3)

Manage your data with
Google Cloud services

As outlined in the previous section, long-term, working, and
transactional memory each play a distinct role in an agent’s
data architecture. Here, we explain how to build it. ADK
provides the necessary patterns and integrations to map this
conceptual architecture directly to specific, scalable Google
Cloud data services.

1. Long-term knowledge base
(grounding, context, and analytics)

This is the agent’s permanent memory, combining a
searchable knowledge library, a record of user interactions,
and a repository for analytics.

+ Vertex Al Search: Serves as the agent’s queryable
knowledge library for unstructured information. In ADK,
a VertexAlSearchToolset allows an agent to ground its
responses by retrieving relevant information from a specific
set of documents.

« Firestore: Functions as the agent’s persistent user memory.
In ADK,; it's used to store and retrieve conversational history
and the state of long-running tasks, enabling a continuous,
personalized experience that can be resumed across
sessions.

+ Cloud Storage: Acts as the agent’s durable file system.
ADK uses it as the source of truth for raw documents
(e.g., PDFs, images) that are then indexed by services like
Vertex Al Search.

+ BigQuery: Functions as the agent’s analytical database.
The BigQueryToolset in ADK enables agents to answer
questions by executing complex analytical queries against
large, structured datasets.

2. Working memory
(caching and session state)

This is the agent’s high-speed, transient memory for managing
the immediate context of a live conversation.

« Memorystore: Provides a high-speed cache for the agent.
In ADK, its primary role is to store the results of frequent
or expensive tool calls, drastically reducing latency and
operational costs.

3. Transactional memory
(auditing and reliable execution)

This is the agent’s durable ledger for recording critical actions
and state changes with high integrity.

+ Cloud SQL: Serves as the agent’s reliable system of
record. ADK enables patterns where tools log their actions
to Cloud SQL, creating a permanent, ACID-compliant audit
trail for every important agent-driven action.

» Cloud Spanner: Acts as a globally consistent backend
for mission-critical agent actions. In an advanced ADK
implementation, a tool representing a core business
process (e.g., process_global order) would trigger
a transaction in a Spanner-backed system to ensure
global integrity.

4. The next frontier:
Distilled conversational memory

As an agent’s interaction history with a user grows over weeks
or months, providing the entire raw context to the model for
every query becomes inefficient and cost-prohibitive. Plus,
models can get confused.

Memory distillation is the next frontier. It uses an LLM

to dynamically and continuously distill long conversation
histories into a compact, structured set of essential facts
and preferences. The resulting curated, long-term memory
is far more efficient to retrieve and use.

This is an active area of research, but early patterns are
emerging. An example is Vertex Al Memory Bank, a managed
service on Vertex Al Agent Engine. It provides mechanisms
to implement memory distillation:

» Automated distillation: It can asynchronously process
conversation histories to automatically extract
and generate a list of salient facts about the user
(GenerateMemories).

- Agent-directed distillation: For more control, an agent
can use memory-as-a-tool to decide what specific
information is important enough to be explicitly written
to the memory bank (CreateMemory).

Focusing on a distilled set of memories rather than raw
history is more scalable, efficient, and “human-like”; ideal
for the next generation of agentic systems.

Google Cloud

35

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/generate-memories

CSection 1) (Section 2: How to build Al agents) (Section 3)

Deploy to the managed runtime
with Vertex Al Agent Engine

ADK is deployment-agnostic by design. The core agent

logic you define in Python is decoupled from the serving
infrastructure so you can develop and test locally, then deploy
the same agent to various production environments.

©
(=]

BaseAgent

Develop

Build/package

v

Container

Deploy to

v v

Package

Deploy to

Cloud Run

(Vertex Al Agent Engine > (

Custom infrastructure
(Docker Host, GKE, On-Prem)

) C

Google Cloud

Deploy

ADK agents are exposed for deployment as standard
web services using FastAPI. The adk api_server command
automatically wraps your agent in a production-ready API
server, which can then be containerized.

While this container could be deployed to various services
on Google Cloud, the three primary managed deployment
targets for ADK agents are:

+ Cloud Run: A managed compute platform for running
your agent as a container-based application. This is an
excellent choice for integrating your agent into an existing
microservices architecture or for use cases requiring
custom container configurations.

Self-managed

+ Vertex Al Agent Engine: A fully managed, auto-scaling
service on Google Cloud specifically designed for
deploying, managing, and scaling Al agents built with
frameworks like ADK. It provides deep integration with the
Vertex Al ecosystem for MLOps, monitoring, and security.

« Google Kubernetes Engine (GKE): This managed
Kubernetes service is the best choice if you have an
existing Kubernetes-based infrastructure or are making
a strategic day-one decision to prioritize long-term
portability, deep architectural control, and the open-
source Kubernetes ecosystem. It provides the most
granular control over networking, stateful workloads,
and specialized hardware like GPUs and TPUs, making
it ideal for teams with platform engineering expertise
or those building complex, multi-service applications
that will need to scale.

Google Cloud

36

("Section 1) <Section 2: How to build Al agents) (Section 3) n

As a service designed for agentic workloads, Vertex Al Agent

Engine provides several key benefits:

It's important to understand the relationship between Core capabilities

Google Cloud'’s agent creation tools. Vertex Al Agent

Builder is the comprehensive suite of features for the * Automated scalability: Automatically handles scaling
entire agent lifecycle, from discovery to deployment. to meet varying user loads.

A core component of this suite is Vertex Al Agent Engine, - Security and authentication: Provides integrated identity
the managed service specifically designed to deploy, and access management.

manage, and scale your agents in production. . o)
« Framework agnostic: Supports agents built with various
For this guide, when we discuss the production frameworks, not just ADK.

runtime environment, we are referring to the Vertex

Al Agent Engine. - Agent lifecycle management: Provides APIs for creating,

reading, updating, and deleting your deployed agents.

For startups using ADK, Vertex Al Agent Engine is the Specialized agentic features
recommended deployment target. It is specifically optimized
to be a cost-effective, auto-scaling solution, and it provides
the easiest and most direct path to a scalable, production-
ready agent. As a fully managed service, it abstracts the

+ Memory Bank: A managed service to dynamically
generate and retrieve long-term, personalized memories
based on users’ conversations.

underlying infrastructure, freeing your engineers to focus - Example Store: Allows developers to provide and
on core agent logic rather than operational overhead. manage few-shot examples to improve and steer agent

performance on specific tasks.

System architecture for a Gemini-powered agent engine

Google Cloud 37

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/overview
https://cloud.google.com/vertex-ai/generative-ai/docs/example-store/overview

(Section 1) (Section 2: How to build Al agents> (Section 3)

Collaborate with Agent2Agent

The A2A protocol’s rich partner ecosystem

communication i

accenture activeloop Ndobe e amawave (& ArcBlack
The true power of specialized agents is unlocked when Ates Jauthe Awwes< BOG Elcsai 3bme boomi
they can collaborate. To enable this, Google champions the €ovromten CODMTE COGNIGY sontextualal ¢ ~cotality
Agent2Agent (A2A) protocol, an open standard that ensures oATASTAX @ Decsgen Deloitte. T glean @Ema <EpAM>

the agents you build today can discover, communicate
with, and securely coordinate actions with other agents,

GoravTEE @) Growthess @ | GURU MHUMAN incorfa

regardless of who built them or what framework they use. %fog K b T e @ € e
This commitment to an open, interoperable ecosystem 8 Mcrosatt :NE04] wnewrelc proofs © [Jemes Ppendo
is central to Google Cloud’s agent strategy. PWE Gaunlphl RADIX wmpa SIEMENS @D nrg
solaces £Fstacok ©) Supertab SLZIGA UKG TREDENCE FEITT
Key concepts of the A2A protocol include: A2licbs AI7] AISERA WRITER
« Agent card: A digital “business card” (typically a JSON file musceen Eblock Bloomberg GBLUEISH carezs Aarize Articul?
fat a well—k.n'own endpc'>|nt) that an agent u§es Fo advertise = conere oo wDmRobot | ——
its capabilities, endpoint URL, and authentication
q . . e Gkballegic
requirements, enabling discovery by other agents. o e
. . . HCLTech o ETARS W’ﬁ'ﬁ & emeaams froctabes 00 Mebwssa
- Task-oriented architecture: Interactions are framed)

“ D q D Labelb LGCNS / Turt
as “tasks.” A client agent sends a task request to a server . . Infosys wnfurd
agent, which processes it and returns a response. Mnisum NGORLE (optimzely ORACLE To05S Zilumers @uer
An agent can act as both a client and a server. &k RELTIO Soge SofBank € P= S

« Modality agnostic: A2A supports text, audio, and video O mafindra A Think® upwork sayone servicenow
communication, reflecting the evolving, multimodal zocket vitech % wapow [lTyeerce jpath O zeoTar
nature of agent interactions. ushur ZOOM Y vervelo

How the A2A protocol works

Remote agent

End user Client

Google Cloud 38

https://a2a-protocol.org/latest/

("Section1) (Section 2: How to build Al agents) (‘section3)

ADK agents can natively participate in this ecosystem.
They expose a standard HTTP endpoint and an agent.json
file, allowing them to be discovered and to communicate
with any other A2A-compliant agent.

@ Customer story

How BioCorteX uses the A2A protocol
to accelerate drug discovery.

BioCortex uses knowledge graphs and in-silico
simulations to model the complex interactions between
bacteria, drugs, and the host to uncover the hidden
interactions and and de-risk the drug development
process for our pharma partners.

Situation

In life sciences, connecting and transforming disparate
datasets into commercially relevant knowledge is
slow and uncertain. Hypothesis testing can take years,
hampered by poor models, conflicting theories, and
the sheer complexity of biology.

Solution

BioCorteX built a multi-agent system on GCP that
interrogates hypotheses from three dimensions:
biological plausibility, real-world clinical relevance,
and commercial importance. It uses Gemini-powered
agents, the ADK, and a graphRAG to navigate our

44 billion-connection knowledge graph of global
samples—all orchestrated via A2A.

Impact

What once took years now takes days. BioCorteX graph
agents deliver fully transparent scenario planning to key
decision makers across their portfolio, underpinning
high-level commercial considerations with deep scientific
knowledge—accelerating testing of new mechanisms and
therapeutic areas while cutting waste across the pipeline.

Explore these A2A resources to get started:

« A2A Project Github org

« A2A protocol docs

« A2A protocol specification

éé

At BioCorteX, our Carbon Graph agents
are different. Unlike other agents, they
deal in facts not opinions or associations.
By traversing the world’s largest
mechanistic biology-based knowledge
graph [rather than using an LLM],
Carbon Graph agents do not suggest
hypotheses, they test their plausibility,
clinical relevance, and commercial
aspects, allowing full alignment across
R&D, Regulatory, and Commercial teams
within the organization.”

Google Cloud 39

https://github.com/a2aproject
https://a2a-protocol.org/
https://a2a-protocol.org/latest/specification/

e . ™~
‘\Sectlon 1)

("Section 2: How to build Al agents D (Section 3>

2.2 A step-by-step guide:
Defining an LLM agent

Building an Al agent is an iterative process of definition,
testing, and deployment. This section focuses on the first
and most critical phase: defining the agent’s core identity,
instructions, and capabilities.

While the open source ADK Samples repository provides

a comprehensive library of ready-to-use agents, its purpose
is to show you what a finished agent looks like. This section,
in contrast, is designed to teach you how to think about
building an agent. It explains the architectural principles and
the strategic “why” behind each core component, giving you
the foundational knowledge needed to effectively use the
samples to build your own custom solutions.

To make this practical, let’s walk through the process of
building a Software Bug Assistant, an LimAgent agent designed
to help a support team triage new bug reports.

1. Define the agent’s identity

First, you establish what the agent is and what it’s for.
This is done with three key parameters:

« name (required): A unique string identifier, crucial
for internal operations and multi-agent delegation.
For our example: software_bug_triage_agent.

description (recommended): A concise summary

of capabilities, used by other agents to decide when

to route tasks. For our example: “Analyzes new software
bug reports, categorizes their priority, and assigns them
to the correct engineering team.”

« model (required): The underlying LLM that powers
the agent’s reasoning, such as gemini-2.5-flash.

Al agents and their underlying frameworks are evolving

at an incredible pace. While this guide focuses on the
durable architectural principles and patterns for building
agentic systems, the specific code snippets and API details
that follow are a snapshot in time. We aim to teach the “why”
and “how” of agent design, not to provide source code to
copy and paste directly into a production solution.

2. Guide the agent with instructions

The instruction parameter is the most critical component

for shaping an agent’s behavior. It tells the agent its core
task, persona, constraints, and how to use its tools. For our
Software Bug Assistant, we would direct it to act as an expert
engineering manager, explain how to use its tools to look up
user data, and specify that its final output should be a JSON
object for our ticketing system.

An effective instruction should:

- Be clear and specific about the desired outcomes.

+ Provide examples (few-shot prompting) for complex tasks.

» Guide tool use by explaining when and why they should
be used.

+ Inject dynamic data from the agent'’s state using
{variable} syntax.

Be precise, as your entire definition is a prompt

An LLM uses every part of an agent’s definition, from its
name and description to the names and descriptions of
its tools, for reasoning. And it interprets this information
with a high degree of literalism. Avoid ambiguous, unclear,
or contradictory naming and descriptions, which can

lead to “context poisoning,” where the agent becomes
confused, pursues incorrect goals, or fails to use its tools
correctly. Instead, treat every configuration string as

a carefully crafted instruction to the model.

For the most current implementation details, API signatures,
and best practices, always consult the official ADK

documentation and the ADK Samples repository.

Google Cloud

40

https://github.com/google/adk-samples
https://google.github.io/adk-docs/agents/llm-agents/
https://google.github.io/adk-docs/
https://google.github.io/adk-docs/
https://github.com/google/adk-samples

("Section 1) (Section 2: How to build Al agents) (Section 3)

3. Equip the agent with tools

Tools give your agent capabilities beyond its built-in reasoning,
allowing it to interact with the outside world. Our Software
Bug Assistant would need several tools to do its job, such as:

A function to get information about the user reporting
the bug (get_user_details(user _id)).

- A function to search the codebase for relevant files
(search_codebase(file_name)).

+ A function to create a ticket in a project management
system (create_jira_ticket(...)).

The LLM uses the tool’'s name, docstring, and parameter
schema to decide which tool to call.

Be brief and distinct

Each tool you define adds a new choice for the model to
consider. Especially when an agent has many tools, any
ambiguity or overlap in their descriptions can confuse
the model, leading to looping behaviors or incorrect tool
selection. To ensure the model can choose correctly,
make each tool’s name and description a clear and
unique signal of its purpose.

Architecture of a software bug assistant with ADK Python

Google Cloud

Software bug agent
(ADK Python)

Cloud Run
IT support '

4. Complete the development lifecycle

You're now ready to test and evaluate your agent’s
performance. This task is all about assessing the quality

of the agent’s output by examining its step-by-step execution,
or “trajectory.” The next section covers the important topic

of agent evaluation in detail.

Once you're confident it's performing well, you need a

streamlined way to deploy it. This is where your prototype
becomes a production-ready application for your team or
customers, turning your agent into a reliable business tool.

Test, test, and test again

Agentic systems are non-deterministic and can exhibit
emergent behaviors. Standard unit tests are insufficient.
Rigorous evaluation is the only way to ensure the quality
and reliability of your agent. Focus your testing on

two key areas: the reasoning trajectory (the step-by-
step logic and tool use) and the final output quality (its
accuracy, helpfulness, and grounding). As extensive
benchmark testing shows, even state-of-the-art models
can produce hallucinations or get stuck in reasoning
loops, making continuous evaluation a critical part

of the development lifecycle.

! MCP Toolbox ~ Bug ticket database
LT > > for Databases = ------ > ZZ== CloudsQl
/ =
Cloud Run PostgreSQL

-->

Google Search tool
Agent-as-a-Tool

GitHub MCP Server
MCP Tools

StackExchange tool

LangChain Tool

Google Cloud

41

("Section1) (Section 2: How to build Al agents) (‘section3) n

@ Customer story

How Box uses ADK and the A2A protocol ‘ ‘
to accelerate content development.

Box is an Intelligent Content Management platform We're entering a new era where

that enables organizations to fuel collaboration, Al agents will transform how work gets
manage the entire content lifecycle, secure critical done—and content is at the center
content, and transform business workflows. of it all. With Box as the secure content
layer and Google Cloud’s A2A Protocol
Situation enabling seamless collaboration across
Critical business processes like compliance checks, ecosystem, we’re unlocking powerful
contract management, and loan approvals are slowed by new ways to automate business
employees having to search and interpret vast amounts processes, accelerate decision-
of information stored across documents in Box. This making, and drive real outcomes

creates inefficiency and delays critical decisions. for our customers.”

Solution

Box is introducing an A2A-enabled agent, built with
Google’s ADK and using Gemini. The agent connects
directly to the Box Intelligent Content Cloud, allowing
users to ask complex questions in natural language
and receive summarized, contextual answers and
insights from their documents instantly.

Impact

This dramatically accelerates content-centric workflows
and improves the quality of decision-making. It lays

the foundation for more advanced transactional agents
that can govern, manage, and initiate processes like
e-signatures and approvals, fundamentally transforming
how work gets done in the company.

Google Cloud 42

(Section 1 > <Section 2: How to build Al agents D (Section 3>

2.3 Govern and scale your
agent workforce with
Google Agentspace

As your startup moves from building a single agent to Try these prompts in Google Agentspace:
deploying a portfolio of specialized agents, you face a new
set of challenges: How do you manage them? How do non- Schedule our weekly team sync for Thursday at 10 AM.

technical team members leverage them? How do you govern

their access to data and tools?
. o Summarize this week’s updates for the #product Slack channel.
Google Agentspace solves these scaling problems. This single,

secure platform allows you to create, govern, and orchestrate
your entire Al agent workforce, unifying disparate applications Create a meeting agenda to discuss investor prep.
and data sources. It complements ADK'’s code-first development
by providing the framework to scale agent usage across your
entire organization and manage them effectively.

You can use Google Agentspace to:

+ Unify and access company data: Google Agentspace
breaks down data silos by using out-of-the-box Download the Google Agentspace prompting guide
connectors to your existing company applications for more templates.
(e.g., Microsoft Sharepoint, Google Workspace, Jira).
It applies Google’s multimodal search technology across
this connected data, allowing any employee to get instant
answers and synthesize insights from a central source
of truth while respecting all existing access controls.

+ Enable team-wide automation: While ADK is ideal for
complex, code-first agent development, Google Agentspace
empowers your entire organization to automate workflows.
Domain experts in product, marketing, or operations can
use the no-code Agent Designer to build their own custom
agents using a prompt-driven interface. This turns their
specific knowledge into automated solutions without
requiring engineering resources.

« Govern and orchestrate a fleet of agents: Google
Agentspace provides a single platform to manage
and govern agents built with ADK, the no-code designer,
or from partners. The Agent Gallery acts as a central
portal for your team to discover, manage, and deploy
them all, including both your custom-built solutions
and pre-built Google Agents designed for complex
tasks like deep research or idea generation.

Google Cloud 43

https://cloud.google.com/products/agentspace
https://cloud.google.com/resources/agentspace/prompt-guide?e=48754805?utm_source%3Dlinkedin&hl=en

("Section 1) (Section 2: How to build Al agents) (Section 3)

@ Customer story

How Zoom'’s Al agent automatically schedules
Zoom meeting from Gmail context, with Google
Agentspace integration.

Zoom is a communication technology company that
provides an open, Al-first work platform used for virtual
meetings, webinars, chat, online collaboration, customer
experience, and more.

éé

Situation

Zoom's Al-first strategy centers on transforming Our contrlbutlor? to the "A‘ZA p_mtoco'

Al Companion into a fully agentic framework-not only enables deeper integration with Google
capable of advanced reasoning and task orchestration, Cloud and other third-party platforms,
but also seamlessly integrated with customer’s key giving customers flexibility and choice.”

third-party systems. By enabling collaboration with
other Al agents, Zoom drives more meaningful work
outcomes through an open, interoperable ecosystem.

Solution

Zoom Al Companion is integrating with Google Agentspace
to streamline meeting scheduling.Launching later

this summer, this collaboration will allow A2A-enabled

Al agents to automatically schedule Zoom Meetings

from Gmail context, update Google Calendar, and keep
participants informed, eliminating the back-and-forth

of manual scheduling.

Impact

+ Reduced technical barriers in cross-platform
Al integration.

- Seamless interaction between Zoom Al
Companion and external A2A-enabled agents
without custom code.

» Enhanced workflow automation and improved
efficiency for enterprise customers.

« Future support for more sophisticated
multi-agent Al interactions.

Google Cloud 44

e . ™~
‘\Sectlon 1)

("Section 2: How to build Al agents D (Section 3>

2.4 Other options for
building agents

Experiment with Gemini CLI

For startups needing an immediate, cost-effective way
to experiment with Al, Gemini CLI is an open-source agent
that brings Gemini directly to your terminal. It offers:

- Significant cost savings: Get free access to Gemini
with generous usage limits (1 million token context,
60 queries per minute).

» Enhanced productivity: By integrating into existing
developer workflows, it accelerates coding, debugging,
and documentation.

- Total flexibility: As an open-source tool (Apache 2.0),
you can audit, modify, and embed it into your toolchain,
avoiding vendor lock-in and enabling deep customization.

Check out Gemini CLI configured for ADK development.

Accelerate development
with Firebase Studio

A backend agent, even a powerful one built with ADK, is only
one part of a complete product. To bring it to life, you need

to build an entire full-stack application around it, including the
user interface, databases, and hosting. Firebase Studio is an
integrated, cloud-based workspace that uses agentic Al to
accelerate the entire development lifecycle. Teams can use it
to handle everything from Ul prototyping and code generation
to secure deployment on Google Cloud’s infrastructure.

Together, ADK for the agent’s backend logic, the Agent
Starter Pack for production infrastructure (which we explore
in section 3), and Firebase Studio for the full-stack application
provide a complete, end-to-end toolkit for a startup to build
and deploy a powerful, state-of-the-art agentic system.

Firebase Studio accelerates the entire development
lifecycle with Al:

+ Fast setup: Use App Prototyping Agent to create a new
project using natural language, mockups, or screenshots.
Start by selecting from a large catalog of templates
for popular frameworks and languages, or import
an existing project.

« Gemini in Firebase: Use Al assistance on tasks like
coding, debugging, testing, refactoring, explaining,
and documenting code.

+ Collaboration: Share workspaces with team members,
and provide a URL for early testers to preview apps.

+ Optimize: Preview apps as users see them with built-
in web previews and Android emulators, and test and
optimize with access to thousands of extensions in the
Open VSX registry.

+ Deploy: Publish to Firebase App Hosting with a few clicks,
or deploy production apps to Cloud Run, Firebase Hosting,
or your own custom infrastructure.

Try these prompts with the App Prototyping agent:

Generate a customer support dashboard that ingests
data from Zendesk and displays key metrics like ticket
volume and resolution time.

Create a B2B Saa$S application with user authentication,
a PostgreSQL database, and a subscription billing page.

Build a full-stack application for an internal bug tracking
system with a form for submission and a kanban board
to view ticket status.

You can also start by selecting from a large catalog
of templates for popular frameworks and languages,
or import an existing project.

Google Cloud

45

https://github.com/google-gemini/gemini-cli
https://firebase.studio/
https://firebase.google.com/docs/studio/get-started-ai
https://developers.googleblog.com/en/simplify-agent-building-adk-gemini-cli/

("Section 1

(Section 2: How to build Al agents)

ttSection 3

Key takeaways:
From build to scale

Your goal

Best option

Build a custom, multi-agent
system from code.

Use the open-source Agent Development Kit (ADK).

Deploy, scale, and manage
your agent in production.

Deploy it on Vertex Al Agent Engine.

Give your agent the power
of long-term memory.

Use the Memory Bank feature within
Vertex Al Agent Engine.

Enable your agent to discover
and talk to other agents.

Use the Agent2Agent (A2A) protocol,
an open standard for agent communication.

Build a complete Al-powered
app from a prompt.

Use Firebase Studio for an Al-assisted
development workspace.

Quickly experiment with
Gemini in your terminal.

Use the Gemini CLI for a simple, command-line interface.

Google Cloud 46

fiSection 1 ‘ (Section 2: How to build Al agents) ttSection 3 ‘

Ready to turn your
Al vision into reality?
We're here to help.

Learn how to build more generative Al applications
with on-demand Startup School sessions.

Get up to $350k USD in Google Cloud credit
with the Google for Startups Cloud Program.

Apply now

Contact our Startups team.

Get in touch

Stay connected and get all our latest updates by
subscribing to the Google Cloud Startup Newsletter.

Subscribe

Google Cloud 47

https://bit.ly/4mjQfLw
https://cloud.google.com/startup/apply?utm_source=cloud_sfdc&utm_medium=et&utm_campaign=FY21-Q1-global-demandgen-website-cs-startup_program_mc&utm_content=ai-agent-report-cta&utm_term=-
https://cloud.google.com/contact/form?utm_source=google_start_up&utm_medium=et&utm_campaign=Global-Cloud-Platform-Website-Leads&utm_content=ai-agent-report-cta&utm_term=-
http://goo.gle/4muyMQ8

Section 3

Ensuring Al agents

are reliable
and responsible

(Section 1 > (Section 2>

‘/Section 3: Ensuring Al agents are reliable and responsible)

Due to the non-deterministic nature of LLM-based
systems, it can be hard to achieve production-grade

reliability. Moving beyond superficia

I“

vibe-testing”

requires a rigorous engineering approach to ensure
an agent operates safely and provides consistent value.

This section details the methodologies and tooling necessary
to address these challenges, focusing on three key areas:

» Correctness and reliability: Evaluating the accuracy of
final outputs and the validity of intermediate reasoning steps.

+ Performance and scalability: Measuring and optimizing
agent latency and throughput under load.

- Safety and responsibility: Implementing safeguards,
monitoring for undesirable behavior, and ensuring the
agent operates within defined boundaries.

These practices are the tangible application of Google’s
commitment to responsible Al, allowing startups to build
powerful and reliable agents aligned with industry-leading
principles for safety.

®) Prefer audio? Listen to the podcast version
of this section, created with NotebookLM.

éé

Agents hold the key to a new level
of productivity, but their success
depends on our guidance.”

Harrison Chase

CEO and Co-Founder of LangChain

Production-grade observability means looking beyond
application metrics. You must also measure low-level
operational metrics like CPU and memory usage.
Diligently tracking resource consumption is essential for
diagnosing performance bottlenecks, optimizing your
runtime, and directly reducing operational costs. ADK
and the Agent Starter Pack provide native OpenTelemetry
support, allowing you to pipe crucial operational data
directly into your existing monitoring tools.

This podcast was created using NotebookLM with the
prompt: "As a podcast host, generate a podcast for
developers and technical founders. Introduce AgentOps
as the framework for building reliable Al, moving beyond
informal testing to a rigorous, automated process.

“Explain how AgentOps evaluates an agent’s reasoning,
accuracy, and safety, and how it mitigates risks like
misinformation and security vulnerabilities. Describe how
the Agent Starter Pack, working with the Agent Development
Kit (ADK), quickly implements this with pre-configured

tools for infrastructure, CI/CD, and continuous evaluation.
Conclude by highlighting that this disciplined approach

is a competitive advantage and direct listeners to Google’s
resources for startups.”

Google Cloud

49

https://safety.google/cybersecurity-advancements/saif/
https://safety.google/cybersecurity-advancements/saif/
https://github.com/GoogleCloudPlatform/agent-starter-pack
https://opentelemetry.io/
https://goo.gle/4pwDXkD

(Section 1 > (Section 2>

("Section 3: Ensuring Al agents are reliable and responsible>

3.1 AgentOps: A framework
for production-ready agents

Agent Operations (AgentOps) is an operational methodology
that addresses the challenges of reliability and responsibility
in production. It adapts the principles of DevOps, MLOps,
and DataOps to the unique challenges of building, deploying,
and managing Al agents across their lifecycle. And it gives
you a systematic, automated, and reproducible framework
for handling the complexities of non-deterministic, LLM-
based systems in production environments.

A robust AgentOps strategy systematizes the development
process, providing continuous feedback loops to improve

an agent’s reliability, safety, and performance across its tools,
reasoning capabilities, and underlying models.

A systematic framework
for agent evaluation

Evaluating non-deterministic, agentic systems is one

of the most complex challenges in modern software
engineering. Traditional testing often focuses on lexical
correctness, but agent evaluation must address two harder
problems: semantic correctness (did the agent understand
and helpfully answer the user’s intent?) and reasoning
correctness (did the agent follow a logical and efficient
path to its conclusion?).

As we discussed in section 1, the cognitive architecture
governing this reasoning is often a framework like ReAct,
which establishes a dynamic loop where the agent
interleaves thought and action. A failure at any point

in this loop can lead to an incorrect outcome. Therefore,

a rigorous, multi-layered evaluation framework is required.
This framework is implemented using a combination

of the ADK for core agent logic and instrumentation, and
the Agent Starter Pack for production-grade infrastructure,
automation, and observability.

Layer 1: Component-level evaluation
(deterministic unit tests)

This layer focuses on the predictable, non-LLM components
of the agent system.

» Objective: To verify the lexical correctness of individual
building blocks, ensuring that agent failures don’t stem
from simple bugs in its components.

* What to test:

 Tools: Expected behavior with valid, invalid,
and edge-case inputs.

- Data processing: Robustness of parsing
and serialization functions.

« APl integrations: Handling of success, error,
and timeout conditions.

» Implementation:

+ ADK defines the agent’s tools as Python functions
(or Java methods). These functions are the direct
subjects of component-level testing.

+ Agent Starter Pack provides the testing infrastructure.
It generates a project with a standard pytest environment
configured in the tests/unit/ directory. Developers can
immediately write unit tests for their ADK-defined tools
and run them via the make test command.

Google Cloud 50

("Section 1) (Section 2) (_Section 3: Ensuring Al agents are reliable and responsible)

Layer 2: Trajectory evaluation
(procedural correctness)

This is the most critical layer for evaluating the agent’s
reasoning process. A “trajectory” is the full sequence
of Reason, Act, and Observe steps the agent takes

to complete a task.

- Objective: To verify the agent’s reasoning correctness
within the ReAct cycle.

* What to test:

» Reason step: Does the agent correctly assess the
goal and current state to form a logical hypothesis
for the next step?

 Act step: Does it select the correct tool (Tool Selection)
and correctly extract and format the arguments for
that tool (Parameter Generation)?

+ Observe step: Does it correctly integrate the output
from the tool to inform the next Reason step of the cycle?

+ Implementation:

- ADK's core runtime executes the agent’s ReAct
loop, integrating directly with Google Cloud Trace
to instrument each Reason, Act, and Observe step.
This allows developers to visualize the entire trajectory,
inspect tool inputs and outputs, and examine the
model’s chain of thought to debug its reasoning.

 Agent Starter Pack automates and scales trajectory
evaluation. A tests/integration/ directory creates
a “golden set” of prompts with expected ReAct
trajectories. The automated CI/CD pipeline (set
up with agent-starter-pack setup-cicd) runs these
tests on every pull request to prevent regressions.
The starter pack’s observability infrastructure is what
captures the trace data emitted by the ADK agent.

Layer 3: Outcome evaluation
(semantic correctness)

This layer evaluates the final, user-facing response generated
after the ReAct loop has concluded.

+ Objective: To verify the semantic correctness, factual
accuracy, and overall quality of the final answer.

+ What to test:
 Factual accuracy and grounding: Is the answer correct
and verifiably based on information gathered during
the Observe steps?

» Helpfulness and tone: Does the response fully address
the user’s need in the appropriate style?

» Completeness: Does the response contain all necessary
information?

» Implementation:

» ADK's toolset is key for verifying factual accuracy.
Developers can create specialized tools or use APIs
for grounding verification. These tools, called during
the Act step, programmatically check if the agent’s
final answer is supported by the context it retrieved,
providing a quantitative measure against hallucination.

« Agent Starter Pack provides the platform for running
these evaluations at scale. It integrates with Vertex Al's
Gen Al evaluation service for LLM-as-judge scoring.

Its built-in Ul playground includes feedback mechanisms
that log human ratings directly to BigQuery, enabling
high-fidelity HITL evaluation.

Layer 4: System-level monitoring
(in-production)

Evaluation doesn’t stop at deployment. Continuously
monitoring the agent’s live performance is critical.

» Objective: To track real-world performance and detect
operational failures or behavioral drift.

» What to monitor: Tool failure rates, user feedback scores,
trajectory metrics (e.g., number of ReAct cycles per task),
and end-to-end latency.

» Implementation:

» The ADK agent, running in production, is the source
of the operational data, emitting events and traces
for every live user interaction.

» Agent Starter Pack provides a production-grade
observability stack out-of-the-box. It automatically
configures OpenTelemetry, a Log Router to BigQuery,
and provides templates for Looker Studio dashboards.
This allows teams to immediately track agent
performance, analyze trends, and debug issues using
data from real-world usage without additional setup.

This comprehensive and practical methodology for agent
evaluation is the tangible implementation of a robust
AgentOps strategy, moving teams beyond informal “vibe-

testing” to a systematic, automated, and reproducible process.

By dissecting evaluation into component, trajectory, outcome,
and system-level monitoring, it directly addresses the core
domains of AgentOps.

Adopting a systematic evaluation framework is not merely

a best practice but a competitive advantage. It establishes

a rigorous, data-driven, and automated process that allows
teams to innovate faster, deploy with confidence, and build
agents that are demonstrably safer and more effective.

Google Cloud

51

https://github.com/GoogleCloudPlatform/agent-starter-pack
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview

("Section 1) (Section 2) CSection 3: Ensuring Al agents are reliable and responsible)

AgentOps toolkit: ADK
and Agent Starter Pack

Automated CI/CD pipelines implement the principles

of AgentOps, so that any change to the agent’s code, tools,
or prompts triggers a standardized process of building,
unit testing, and quantitative evaluation against a predefined
dataset. This automated evaluation step is essential

for preventing regressions and provides continuous,
objective feedback on the agent’s performance and safety
before deployment.

To accelerate adoption of AgentOps principles, the

Agent Starter Pack provides a production-ready reference
implementation. Its holistic templates address common
challenges (e.g., deployment and operations, evaluation,

customization, and observability) when building and deploying

Al agents. Put simply, it bootstraps a new agent project with
the necessary infrastructure and pipelines, so developers
can focus on core logic.

You can create a new, production-ready agent project
with a single command: uvx agent-starter-pack create
my-agent -a adk@gemini-fullstack.

High-level architecture of the Agent Starter Pack

Evaluation LLMs

i 0 Evaluation ' 15 LLMs
i:L VertexAl
Model Garden

2L VertexAl
evaluation

High level
architecture

LLM orchestration

Agent orchestration

. Choose your framework, includes samples
using Google ADK, LangGraph, CrewAl
o
User ,
LLM orchestration
Serving
) h) .) / Cloud Run
|1:1; Serving
(FrontEnd Sl 21:L VertexAl Agent OR

- Engine

APl server
FastAPI

The Agent Starter Pack includes these key components:

Infrastructure as Code (Terraform): Provides reproducible
templates to provision and manage the agent’s cloud
environment, including services like Cloud Run, IAM
permissions, and networking.

Cl/CD pipelines (Cloud Build): A pre-configured
cloudbuild.yaml file automates the build, unit testing,
quantitative evaluation, and deployment process,
directly implementing the AgentOps CI/CD workflow.

Observability and logging (Cloud Trace and Cloud
Logging): Establishes the foundation for monitoring and
debugging by integrating with Cloud Trace for in-depth
analysis of agent execution traces and Cloud Logging
for centralized log management.

+ Data integration (BigQuery): Includes foundational

components for agents that need to connect to and
analyze structured enterprise data using BigQuery.

Continuous evaluation (Vertex Al evaluation): Integrates
with Vertex Al to run evaluation datasets against agent
changes, continuously measuring performance against
the key domains discussed previously.

i .1+ Vector store
::;:L Adapttoany
¢--- store

L Monitoring
o Looker Studio

Data storage
| I)/ and analysis
BigQuery

Observability

- Observability - Loggi

gging

— Cloud Trace and X
— OpenTelemetry t= Cloud Logging
laC and CI/CD

Cl/CD Infrastructure

% Cloud build as code

A Terraform

Google Cloud

52

https://github.com/GoogleCloudPlatform/agent-starter-pack

‘/Sectiom) (SectionZ)

("Section 3: Ensuring Al agents are reliable and responsible)

Better together: ADK and
Agent Starter Pack

ADK and the Agent Starter Pack are engineered to provide
a clear separation between an agent’s application logic
and its operational lifecycle, enabling a robust and scalable
development process.

Essentially, ADK is used to write the agent’s application code,
while the Agent Starter Pack provides the production-ready
operational baseline to run and manage that code at scale.

+ ADK handles the agent’s runtime behavior: As a Python/
Java SDK, ADK provides the APIs and core abstractions
for defining an agent’s application logic. Developers use
it to implement orchestration flows, define tools, and
configure interactions with LLMs.

+ The Agent Starter Pack handles the operational
environment: As a scaffolding tool, it generates
the infrastructure as code (Terraform) to provision
deployment targets (e.g., Cloud Run) and the CI/CD
pipeline configurations (Cloud Build) to automate
the entire lifecycle.

This separation manifests in a five-step workflow:

1. Bootstrap with the Agent Starter Pack: A developer runs
a single command to generate a new project containing
all necessary operational components, including Terraform
files for infrastructure, Cloud Build configurations
for CI/CD, and skeleton files for evaluation datasets.

2. Develop with ADK: Inside this structure, the developer
uses ADK to write the agent’s application logic,
implementing custom tools, composing agents,
and writing the core instructions.

3. Commit and automate: When code is committed to
the source repository, the pre-configured CI/CD pipeline
managed by Cloud Build is automatically triggered.

4. Evaluate continuously: The pipeline builds the ADK
agent into a container and then executes a quantitative
evaluation against a predefined test set, programmatically
validating the agent’s performance and safety.

5. Deploy confidently: Upon a successful evaluation,
the pipeline automatically deploys the new, validated
version of the agent to its target production environment.

By integrating ADK's development framework with the
Agent Starter Pack’s operational automation, you establish
a complete, end-to-end MLOps/DevOps process specifically
tailored for building and managing production-grade

Al agents. It's AgentOps at scale.

Google Cloud 53

("Section 1) (Section 2) CSection 3: Ensuring Al agents are reliable and responsible)

3.2 Build responsible and secure
Al agents with AgentOps

Building powerful agents comes with the non-negotiable
responsibility of ensuring they are safe, secure, and aligned.
This means designing them from the ground up with
safeguards to prevent harmful or unintended outcomes,
including unfair bias, privacy violations, and security
vulnerabilities.

Addressing this requires a structured approach. The diagram
below provides a high-level overview of common risks and
the types of technical and procedural safeguards used

to mitigate them. While this is a valuable starting point,

for a comprehensive guide to standards and best practices,
we strongly recommend consulting Google’s Secure Al

Framework (SAIF).

éé

As Al agents integrate into our lives,

it's crucial for us to address new challenges
around trust, privacy, and security.

It’s important for us to think about
security and privacy, to ask ourselves:
how do we build trustworthy products?”

Jia Li
Co-Founder, President
and Chief Al Officer of LiveX Al

Not performing as
intended (e.g., safety,
quality, accuracy)

Safety attributes
Recitation checks

Customer feedback
channels

Content moderation
API

Misapplication
and/or harmful use by
developers or users

Terms of service

Acceptable use
policy
Safety attributes

Privacy restrictions

Creating the
impression of having
capabilities it does
not actually have

Ul disclaimers

Acceptable use
policy

Model cards

Creating or amplifying
negative societal
biases and harms

Model evaluations

Bias evaluation
tooling

Safety attributes

Creating or worsening
inequality or other
socio-econonic harms

RAIl guides

Acceptable use
policy

Model monitoring

Unsafe deployment
(e.g., too early or
with insufficient
testing)

Model evaluations

Bias evaluation
toolings

RAI guides

Creating or worsening
information hazards
(e.g., lack of
groundedness,
non-factuality,
confirmation bias)

Recitation checks

Bias evaluation
toolings

Model evaluations

Google Cloud 54

https://safety.google/cybersecurity-advancements/saif/
https://safety.google/cybersecurity-advancements/saif/

("Section 1) (Section 2) (_Section 3: Ensuring Al agents are reliable and responsible)

ADK and the Agent Starter Pack deliver a defense-in-depth
strategy for this critical area. First, you can implement
fine-grained, application-level safety controls with ADK.
And, second, the Agent Starter Pack automates the
deployment of the hardened cloud infrastructure that
enforces these controls at scale.

This combined approach addresses key aspects of safety
and compliance:

+ Secure infrastructure and access control: The Agent
Starter Pack uses Terraform to provision a secure
foundation, deploying your agent to environments like
Cloud Run and configuring specific IAM roles to enforce
the principle of least privilege. The tools you define in ADK
then operate within these strict cloud-level permissions,
ensuring the agent cannot access unauthorized
resources even if its own logic is compromised.

+ Input and output guardrails: Within ADK, you can
implement application logic to validate prompts for
potential injection attacks and filter the agent’s final
outputs for harmful content. The Agent Starter Pack
makes these guardrails robust by integrating them
into its CI/CD pipeline. You can then run automated
security tests against every code change to check
for vulnerabilities before they reach production.

«+ Auditing and monitoring: The detailed observability
in ADK creates a granular trace of every thought
and tool call the agent makes. The Agent Starter Pack
operationalizes this by automatically configuring log
sinks that route this data to BigQuery for long-term,
secure storage. This creates the durable audit trail
necessary for compliance reviews and incident response.

Security is a partnership. While the ADK provides the
framework for an agent’s cognitive architecture and

the Agent Starter Pack provides the components to deploy
it, they operate within the larger Google Cloud ecosystem.
It all gives you a formidable security posture built on

a secure-by-design foundation, with integrated controls
designed to defend any workload.

Google Cloud 55

ijection 1 ‘;’;Section 2 (Section 3: Ensuring Al agents are reliable and responsible)

Key takeaways:
Building reliable agents

Your goal Best option

Manage your agent’s lifecycle
professionally.

Adopt AgentOps to automate processes from development
to deployment and monitoring.

Ensure your agent is accurate
and safe before going live.

Implement automated evaluation in your CI/CD pipeline
to rigorously test for quality, grounding, and safety.

Track your agent'’s real-world

performance, cost, and errors.

Set up monitoring using observability tools to get real-time
data on latency, token usage, and tool call success rates.

Figure out why your agent
made a specific decision.

Inspect the agent’s trajectory (its “chain of thought”) using
logging and tracing tools to debug its reasoning process.

Secure your agent, its data,
and its tool access.

Apply AgentOps security principles, which include
infrastructure security, data governance,
and compliance controls.

Get started with
AgentOps quickly.

Use the Agent Starter Pack for pre-configured templates
for CI/CD, evaluation, and infrastructure.

ijection 1 w ‘;’;Section 2 ‘ (Section 3: Ensuring Al agents are reliable and responsible)

Ready to turn your
Al vision into reality?
We're here to help.

Learn how to build more generative Al applications
with on-demand Startup School sessions.

Get up to $350k USD in Google Cloud credit
with the Google for Startups Cloud Program.

Apply now

Contact our Startups team.

Get in touch

Stay connected and get all our latest updates by
subscribing to the Google Cloud Startup Newsletter.

Subscribe

Google Cloud 57

https://bit.ly/4mjQfLw
https://cloud.google.com/startup/apply?utm_source=cloud_sfdc&utm_medium=et&utm_campaign=FY21-Q1-global-demandgen-website-cs-startup_program_mc&utm_content=ai-agent-report-cta&utm_term=-
https://cloud.google.com/contact/form?utm_source=google_start_up&utm_medium=et&utm_campaign=Global-Cloud-Platform-Website-Leads&utm_content=ai-agent-report-cta&utm_term=-
http://goo.gle/4muyMQ8

More from Google’s
full Al stack

Build quickly with Gemini on Google Al Studio.

See all available Gemini models.

Explore now

@ srotiignt @ srotiight

Gemini 3 Pro Image (Nano Banana Pro) Veo and Imagen

This image generation and editing model enables you These cutting-edge models enable you to generate
to blend multiple images into one, maintain character high-quality videos and images from text prompts,
consistency for rich storytelling, make targeted edit existing visuals with natural language, and create
transformations using natural language, and use immersive storytelling experiences with advanced
Gemini’'s world knowledge to generate and edit images. visual synthesis capabilities.

Nano Banana Pro is for high-value, final production assets
while Nano Banana can continue to be used for rapid
ideation and speed-sensitive tasks.

Google Cloud 58

https://ai.google.dev/aistudio
https://ai.google.dev/gemini-api/docs/models
https://ai.google.dev/gemini-api/docs/image-generation
https://deepmind.google/models/veo/
https://deepmind.google/models/imagen/

Conclusion

The journey from prototype to a production-grade system is about
disciplined engineering. By using a code-first framework like ADK
and the operational principles in this guide, you can move beyond
informal “vibe-testing” to a rigorous, reliable process for building
and managing your agent’s entire lifecycle.

For your startup, this disciplined approach becomes a powerful
competitive advantage. Your team can iterate and innovate faster,
automating resource-intensive evaluations along the way.

Plus, you can scale with confidence, without compromising

on safety or security.

As this guide has shown, Google Cloud supports this innovation,
from its purpose-built Al hardware and unified data platform,

to the models, services, and tools needed to transition your
concept into a sophisticated Al system. The platform is the
foundation; your unique vision and the principles outlined in this
guide are the blueprint. Together, they form the basis for building
the next generation of intelligent systems that will drive your
startup forward.

Resources

AdkApp: Develop and deploy agents on Vertex
Al Agent Engine.

Agent Development Kit (ADK): ADK is a flexible and
modular framework for developing and deploying
Al agents.

Agent2Agent (A2A): This is an open protocol enabling
communication and interoperability between opaque
agentic applications.

Agent Starter Pack: Get production-ready agents on
Google Cloud, faster. Go from idea to deployment faster
with pre-built templates and tools.

BigQuery: BigQuery is Google Cloud'’s fully managed,
petabyte-scale, and cost-effective analytics data
warehouse that lets you run analytics over vast amounts
of data in near real time.

Check grounding API: As part of your RAG experience in

Al Applications, you can check grounding to determine
how grounded a piece of text (called an “answer candidate”)
is in a given set of reference texts (called “facts”).

Cloud Functions API: This API manages lightweight user-
provided functions executed in response to events.

Cloud Run: Run frontend and backend services, batch jobs,
host LLMs, and queue processing workloads without the
need to manage infrastructure.

Cloud Storage bucket: Buckets are the basic containers
that hold your data. Everything that you store in Cloud
Storage must be contained in a bucket.

Colab Enterprise: Colab Enterprise is a collaborative,
managed notebook environment with the security
and compliance capabilities of Google Cloud.

Example Store: Example Store lets you store and
dynamically retrieve few-shot examples.

Firestore: Firestore is a highly scalable NoSQL database
for your web and mobile applications.

Gemini 2.5 Flash: Gemini 2.5 Flash is designed to control
the trade-off between quality, cost, and speed.

Gemini 3 Pro Image (Nano Banana Pro): Gemini can
generate and process images conversationally. You can
prompt Gemini with text, images, or a combination of both
allowing you to create, edit, and iterate on visuals with
unprecedented control

Gemini 3 Pro: Gemini 3 Pro is our most advanced reasoning
Gemini model, capable of solving complex problems.

Gemini CLI: Free and open source, brings Gemini 2.5
directly into developers’ terminals — with unmatched
access for individuals.

Gemma: A collection of lightweight, state-of-the-art open
models built from the same technology that powers our
Gemini models.

Gen Al evaluation service: The gen Al evaluation service
in Vertex Al lets you evaluate any generative model or
application and benchmark the evaluation results against
your own judgment, using your own evaluation criteria.

Google Al Studio: Google Al Studio is the fastest way
to start building with Gemini, our next generation family
of multimodal generative Al models.

Google Cloud Observability: Google Cloud Observability
includes observability services that help you to understand
the behavior, health, and performance of your applications.

Google Kubernetes Engine (GKE): GKE is the most
scalable and fully automated Kubernetes service.

Put your containers on autopilot and securely run your
enterprise workloads at scale — with little to no Kubernetes
expertise required.

GraphRAG: GraphRAG on Google Cloud combines
knowledge graphs with Retrieval-Augmented Generation
(RAG) to enhance the accuracy, context, and explainability
of large language models (LLMs).

Imagen: Imagen on Vertex Al brings Google’s state-of-
the-art image generative Al capabilities to application
developers.

MCP Toolbox for Databases: This is an open source MCP
server that helps you build generative Al tools so that
your agents can access data in your database.

Google Cloud

60

https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/quickstart
https://google.github.io/adk-docs/
https://github.com/google-a2a/A2A
https://googlecloudplatform.github.io/agent-starter-pack/
https://cloud.google.com/bigquery?hl=en
https://cloud.google.com/generative-ai-app-builder/docs/check-grounding
https://cloud.google.com/functions/docs/reference/rest
https://cloud.google.com/run?hl=en
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/colab/docs/introduction
https://cloud.google.com/vertex-ai/generative-ai/docs/example-store/overview
https://cloud.google.com/products/firestore
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash
https://ai.google.dev/gemini-api/docs/image-generation
https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/3-pro
https://cloud.google.com/gemini/docs/codeassist/gemini-cli
https://deepmind.google/models/gemma/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview
https://ai.google.dev/aistudio
https://cloud.google.com/stackdriver/docs
https://cloud.google.com/kubernetes-engine?hl=en
https://github.com/codingphun/gcp_graph_rag/blob/main/graph_rag_spanner_sdk_adk.ipynb
https://cloud.google.com/vertex-ai/generative-ai/docs/image/overview
https://google.github.io/adk-docs/mcp/#mcp-toolbox-for-databases

Model Context Protocol (MCP): MCP is an open
protocol that standardizes how applications provide
context to LLMs.

Model evaluation in Vertex Al: The predictive Al evaluation
service lets you evaluate model performance across
specific use cases.

Model Garden on Vertex Al: Jump-start your ML project
with a single place to discover, customize, and deploy a
wide variety of models from Google and Google partners.

Model tuning: Model tuning is a crucial process in adapting
Gemini to perform specific tasks with greater precision
and accuracy.

ReAct: Orchestration with a ReAct (reasoning + action)
agent involves a multi-turn interaction between an
application and a model (or models) where the agent

manages conversations, transactions, and LLM instructions.

Responsible Al: To aid developers, the Vertex Al Studio has
built-in content filtering, and our generative Al APIs have
safety attribute scoring to help customers test Google’s
safety filters and define confidence thresholds that are
right for their use case and business.

Retrieval-Augmented Generation: RAG is an Al framework
that combines the strengths of traditional information
retrieval systems (such as search and databases) with

the capabilities of generative LLMs.

Vector database: A vector database is any database that
allows you to store, index, and query vector embeddings,
or numerical representations of unstructured data, such
as text, images, or audio.

© 2025 Google LLC 1600 Amphitheatre Parkway, Mountain View, CA 94043

Veo: You can use Veo on Vertex Al to generate new videos
from a text prompt or an image prompt.

Vertex Al Agent Engine: Vertex Al Agent Engine is a set
of services that enables developers to deploy, manage,
and scale Al agents in production.

Vertex Al notebooks: Access every capability in Vertex Al
Platform to work across the entire data science workflow—
from data exploration to prototype to production.

Vertex Al Platform: Vertex Al is a fully managed, unified Al
development platform for building and using generative Al.

Vertex Al RAG Engine: Vertex Al RAG Engine is a data
framework for developing context-augmented LLM
applications.

Vertex Al Search: Vertex Al Search brings together the
power of deep information retrieval, state-of-the-

art natural language processing, and the latest in LLM
processing to understand user intent and return the most
relevant results for the user.

Vertex Al Studio: Streamline your foundation model
workflows with Vertex Al Studio. Rapidly prototype,
refine, and seamlessly deploy models to your applications.

Google Cloud 61

https://googleapis.github.io/genai-toolbox/getting-started/mcp_quickstart/
https://cloud.google.com/vertex-ai/docs/evaluation/introduction
https://cloud.google.com/model-garden?hl=en
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/responsible-ai
https://cloud.google.com/use-cases/retrieval-augmented-generation?hl=en
https://cloud.google.com/ai/llms
https://cloud.google.com/discover/what-is-a-vector-database?hl=en
https://cloud.google.com/vertex-ai/generative-ai/docs/video/generate-videos
https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
https://cloud.google.com/vertex-ai-notebooks?hl=en
https://cloud.google.com/vertex-ai?hl=en
https://cloud.google.com/vertex-ai/generative-ai/docs/rag-engine/rag-overview
https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
https://cloud.google.com/generative-ai-studio

Google Cloud

Questions?
Ask our

Startups
team.

https://cloud.google.com/contact/form?utm_source=google_start_up&utm_medium=et&utm_campaign=Global-Cloud-Platform-Website-Leads&utm_content=ai-agent-report-cta&utm_term=-

